Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Ind Health ; 40(4): 185-193, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38349026

RESUMO

Dust pollution is common in Indian roads and several industrial settings (including mines) that affects human health. Identification and characterization of the dust particles in the mining area is essential for knowing the properties of the dust that effectively causes ailments to humans, particularly among workers those who are working in unorganized industrial settings. The present study aimed to determine the level of dust pollution and to know the size and characterize the dust particles in the Pachami-Hatgacha stone mine areas of Birbhum district, West Bengal, India. Dust samples were collected and analysed for Dynamic Light Scattering (DLS) to determine the size and shape of the particles, Fourier Transform Infrared Spectroscopy (FT-IR) to determine the free silica content, and X-ray Florence (XRF) analysis for quantitative estimation of components in the sample. All the analyses were done following standard instrumentation and techniques. The size of the dust particles was much less (ranges 101-298 nm) than the size of respirable particles (2500 nm). Those were mostly generated as well as precipitated during peak working hours of the day. Presence of considerable amounts of silica was confirmed by the FT-IR (strong and broad band at 1000 cm-1) and XRF analysis (76.85% SiO2). Exposure to these dust particles may cause severe health impairments. Therefore, interventions like wet drilling and blasting, sprinkling of water during peak working hours, and awareness of use of personal protective devices among workers are required to reduce the risk and hazards associated with dust pollution to the health of miners and inhabitants around the mines.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Dióxido de Silício , Poluentes Ocupacionais do Ar/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Poeira/análise , Índia
2.
Sci Rep ; 12(1): 19971, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402784

RESUMO

Tube-building larvae of non-biting midges, or chironomids, are considered bioindicators of water pollution. The larvae use benthic particles to make their tubes and create a respiratory current with the movement of their bodies inside the tubes. The tube length of the chironomid larvae varies depending on several physicochemical properties of the aquatic medium. Here we study the role of physicochemical parameters on the tube length from different field sites and in the laboratory. It appears that among different physicochemical factors, dissolved oxygen (DO) has a major role in determining the tube length of the larvae. A quantitative relationship between oxygen concentration and the tube length of larvae is presented here. Our study reveals a longer tube in aquatic media with oxygen deficiency and a shorter tube in those with higher oxygen. This result may help to assess the quality of water bodies and, in particular the status of DO.


Assuntos
Chironomidae , Animais , Larva , Oxigênio , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa