Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
FASEB J ; 35(1): e21148, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33196122

RESUMO

Mitochondrial membrane potential (ΔΨm) is a global indicator of mitochondrial function. Previous reports on heterogeneity of ΔΨm were qualitative or semiquantitative. Here, we quantified intercellular differences in ΔΨm in unsynchronized human cancer cells, cells synchronized in G1, S, and G2, and human fibroblasts. We assessed ΔΨm using a two-pronged microscopy approach to measure relative fluorescence of tetramethylrhodamine methyl ester (TMRM) and absolute values of ΔΨm. We showed that ΔΨm is more heterogeneous in cancer cells compared to fibroblasts, and it is maintained throughout the cell cycle. The effect of chemical inhibition of the respiratory chain and ATP synthesis differed between basal, low and high ΔΨm cells. Overall, our results showed that intercellular heterogeneity of ΔΨm is mainly modulated by intramitochondrial factors, it is independent of the ΔΨm indicator and it is not correlated with intercellular heterogeneity of plasma membrane potential or the phases of the cell cycle.


Assuntos
Ciclo Celular , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Neoplasias/metabolismo , Células Hep G2 , Humanos , Mitocôndrias/patologia , Neoplasias/patologia
2.
J Pharmacol Exp Ther ; 374(2): 308-318, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32546528

RESUMO

ME-344 is a second-generation cytotoxic isoflavone with anticancer activity promulgated through interference with mitochondrial functions. Using a click chemistry version of the drug together with affinity-enriched mass spectrometry, voltage-dependent anion channels (VDACs) 1 and 2 were identified as drug targets. To determine the importance of VDAC1 or 2 to cytotoxicity, we used lung cancer cells that were either sensitive (H460) or intrinsically resistant (H596) to the drug. In H460 cells, depletion of VDAC1 and VDAC2 by small interfering RNA impacted ME-344 effects by diminishing generation of reactive oxygen species (ROS), preventing mitochondrial membrane potential dissipation, and moderating ME-344-induced cytotoxicity and mitochondrial-mediated apoptosis. Mechanistically, VDAC1 and VDAC2 knockdown prevented ME-344-induced apoptosis by inhibiting Bax mitochondrial translocation and cytochrome c release as well as apoptosis in these H460 cells. We conclude that VDAC1 and 2, as mediators of the response to oxidative stress, have roles in modulating ROS generation, Bax translocation, and cytochrome c release during mitochondrial-mediated apoptosis caused by ME-344. SIGNIFICANCE STATEMENT: Dissecting preclinical drug mechanisms are of significance in development of a drug toward eventual Food and Drug Administration approval.


Assuntos
Antineoplásicos/farmacologia , Isoflavonas/farmacologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Isoflavonas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
3.
FASEB J ; 33(7): 8186-8201, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30951369

RESUMO

Statins, widely used to treat hypercholesterolemia, inhibit the 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-limiting enzyme of de novo cholesterol (Chol) synthesis. Statins have been also reported to slow tumor progression. In cancer cells, ATP is generated both by glycolysis and oxidative phosphorylation. Mitochondrial membrane potential (ΔΨ), a readout of mitochondrial metabolism, is sustained by the oxidation of respiratory substrates in the Krebs cycle to generate NADH and flavin adenine dinucleotide, which are further oxidized by the respiratory chain. Here, we studied the short-term effects of statins (3-24 h) on mitochondrial metabolism on cancer cells. Lovastatin (LOV) and simvastatin (SIM) increased ΔΨ in HepG2 and Huh7 human hepatocarcinoma cells and HCC4006 human lung adenocarcinoma cells. Mitochondrial hyperpolarization after LOV and SIM was dose and time dependent. Maximal increase in ΔΨ occurred at 10 µM and 24 h for both statins. The structurally unrelated atorvastatin also hyperpolarized mitochondria in HepG2 cells. Cellular and mitochondrial Chol remained unchanged after SIM. Both LOV and SIM decreased basal respiration, ATP-linked respiration, and ATP production. LOV and SIM did not change the rate of lactic acid production. In summary, statins modulate mitochondrial metabolism in cancer cells independently of the Chol content in cellular membranes without affecting glycolysis.-Christie, C. F., Fang, D., Hunt, E. G., Morris, M. E., Rovini, A., Heslop, K. A., Beeson, G. C., Beeson, C. C., Maldonado, E. N. Statin-dependent modulation of mitochondrial metabolism in cancer cells is independent of cholesterol content.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Carcinoma Hepatocelular/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Hepáticas/metabolismo , Lovastatina/farmacologia , Neoplasias Pulmonares/metabolismo , Mitocôndrias Hepáticas/metabolismo , Sinvastatina/farmacologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia
4.
J Biol Chem ; 291(37): 19642-50, 2016 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-27458020

RESUMO

Non-proliferating cells oxidize respiratory substrates in mitochondria to generate a protonmotive force (Δp) that drives ATP synthesis. The mitochondrial membrane potential (ΔΨ), a component of Δp, drives release of mitochondrial ATP(4-) in exchange for cytosolic ADP(3-) via the electrogenic adenine nucleotide translocator (ANT) located in the mitochondrial inner membrane, which leads to a high cytosolic ATP/ADP ratio up to >100-fold greater than matrix ATP/ADP. In rat hepatocytes, ANT inhibitors, bongkrekic acid (BA), and carboxyatractyloside (CAT), and the F1FO-ATP synthase inhibitor, oligomycin (OLIG), inhibited ureagenesis-induced respiration. However, in several cancer cell lines, OLIG but not BA and CAT inhibited respiration. In hepatocytes, respiratory inhibition did not collapse ΔΨ until OLIG, BA, or CAT was added. Similarly, in cancer cells OLIG and 2-deoxyglucose, a glycolytic inhibitor, depolarized mitochondria after respiratory inhibition, which showed that mitochondrial hydrolysis of glycolytic ATP maintained ΔΨ in the absence of respiration in all cell types studied. However in cancer cells, BA, CAT, and knockdown of the major ANT isoforms, ANT2 and ANT3, did not collapse ΔΨ after respiratory inhibition. These findings indicated that ANT was not mediating mitochondrial ATP/ADP exchange in cancer cells [corrected]. We propose that suppression of ANT contributes to low cytosolic ATP/ADP, activation of glycolysis, and a Warburg metabolic phenotype in proliferating cells.


Assuntos
Translocador 2 do Nucleotídeo Adenina/metabolismo , Translocador 3 do Nucleotídeo Adenina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Hepatócitos/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Glicólise/efeitos dos fármacos , Hepatócitos/patologia , Masculino , Mitocôndrias Hepáticas/patologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
5.
J Biol Chem ; 288(1): 677-86, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23135267

RESUMO

Photodynamic therapy (PDT) is a promising approach to treat head and neck cancer cells. Here, we investigated whether mitochondrial iron uptake through mitoferrin-2 (Mfrn2) enhanced PDT-induced cell killing. Three human head and neck squamous carcinoma cell lines (UMSCC1, UMSCC14A, and UMSCC22A) were exposed to light and Pc 4, a mitochondria-targeted photosensitizer. The three cell lines responded differently: UMSCC1 and UMSCC14A cells were more resistant, whereas UMSCC22A cells were more sensitive to Pc 4-PDT-induced cell death. In non-erythroid cells, Mfrn2 is an iron transporter in the mitochondrial inner membrane. PDT-sensitive cells expressed higher Mfrn2 mRNA and protein levels compared with PDT-resistant cells. High Mfrn2-expressing cells showed higher rates of mitochondrial Fe(2+) uptake compared with low Mfrn2-expressing cells. Bafilomycin, an inhibitor of the vacuolar proton pump of lysosomes and endosomes that causes lysosomal iron release to the cytosol, enhanced PDT-induced cell killing of both resistant and sensitive cells. Iron chelators and the inhibitor of the mitochondrial Ca(2+) (and Fe(2+)) uniporter, Ru360, protected against PDT plus bafilomycin toxicity. Knockdown of Mfrn2 in UMSCC22A cells decreased the rate of mitochondrial Fe(2+) uptake and delayed PDT plus bafilomycin-induced mitochondrial depolarization and cell killing. Taken together, the data suggest that lysosomal iron release and Mfrn2-dependent mitochondrial iron uptake act synergistically to induce PDT-mediated and iron-dependent mitochondrial dysfunction and subsequent cell killing. Furthermore, Mfrn2 represents a possible biomarker of sensitivity of head and neck cancers to cell killing after PDT.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/metabolismo , Ferro/metabolismo , Ferro/farmacocinética , Mitocôndrias/metabolismo , Fotoquimioterapia/métodos , Carcinoma de Células Escamosas/terapia , Linhagem Celular Tumoral , Quelantes/farmacologia , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Ferro/química , Lisossomos/metabolismo , Macrolídeos/farmacologia , Microscopia Confocal/métodos , Modelos Biológicos , Espécies Reativas de Oxigênio , Fatores de Tempo
6.
J Biol Chem ; 288(17): 11920-9, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23471966

RESUMO

Respiratory substrates and adenine nucleotides cross the mitochondrial outer membrane through the voltage-dependent anion channel (VDAC), comprising three isoforms--VDAC1, 2, and 3. We characterized the role of individual isoforms in mitochondrial metabolism by HepG2 human hepatoma cells using siRNA. With VDAC3 to the greatest extent, all VDAC isoforms contributed to the maintenance of mitochondrial membrane potential, but only VDAC3 knockdown decreased ATP, ADP, NAD(P)H, and mitochondrial redox state. Cells expressing predominantly VDAC3 were least sensitive to depolarization induced by increased free tubulin. In planar lipid bilayers, free tubulin inhibited VDAC1 and VDAC2 but not VDAC3. Erastin, a compound that interacts with VDAC, blocked and reversed mitochondrial depolarization after microtubule destabilizers in intact cells and antagonized tubulin-induced VDAC blockage in planar bilayers. In conclusion, free tubulin inhibits VDAC1/2 and limits mitochondrial metabolism in HepG2 cells, contributing to the Warburg phenomenon. Reversal of tubulin-VDAC interaction by erastin antagonizes Warburg metabolism and restores oxidative mitochondrial metabolism.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Piperazinas/farmacologia , Tubulina (Proteína)/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Difosfato de Adenosina/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Carcinoma Hepatocelular/genética , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Bicamadas Lipídicas/metabolismo , Neoplasias Hepáticas/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , NADP/genética , NADP/metabolismo , Proteínas de Neoplasias/genética , Oxirredução , Canais de Ânion Dependentes de Voltagem/genética
7.
Am J Physiol Renal Physiol ; 307(5): F551-9, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24899059

RESUMO

Polycystic kidney disease (PKD) is a common genetic disorder leading to cyst formation in the kidneys and other organs that ultimately results in kidney failure and death. Currently, there is no therapy for slowing down or stopping the progression of PKD. In this study, we identified the disintegrin metalloenzyme 17 (ADAM17) as a key regulator of cell proliferation in kidney tissues of conditional knockout Ift88(-/-) mice and collecting duct epithelial cells from Ift88°(rpk) mice, animal models of autosomal recessive polycystic kidney disease (ARPKD). Using Western blotting, an enzyme activity assay, and a growth factor-shedding assay in the presence or absence of the specific ADAM17 inhibitor TMI-005, we show that increased expression and activation of ADAM17 in the cystic kidney and in collecting duct epithelial cells originating from the Ift88°(rpk) mice (designated as PKD cells) lead to constitutive shedding of several growth factors, including heparin-binding EGF-like growth factor (HB-EGF), amphiregulin, and transforming growth factor-α (TGF-α). Increased growth factor shedding induces activation of the EGFR/MAPK/ERK pathway and maintains higher cell proliferation rate in PKD cells compared with control cells. PKD cells also displayed increased lactate formation and extracellular acidification indicative of aerobic glycolysis (Warburg effect), which was blocked by ADAM17 inhibition. We propose that ADAM17 is a key promoter of cellular proliferation in PKD cells by activating the EGFR/ERK axis and a proproliferative glycolytic phenotype.


Assuntos
Proteínas ADAM/fisiologia , Proliferação de Células/fisiologia , Células Epiteliais/patologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Glicólise/fisiologia , Túbulos Renais Coletores/patologia , Doenças Renais Policísticas/fisiopatologia , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/efeitos dos fármacos , Proteína ADAM17 , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Receptores ErbB/fisiologia , Feminino , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/fisiologia , Túbulos Renais Coletores/efeitos dos fármacos , Túbulos Renais Coletores/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Morfolinas/farmacologia , Fenótipo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Fator de Crescimento Transformador alfa/fisiologia , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
9.
Biochim Biophys Acta ; 1818(6): 1536-44, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22172804

RESUMO

Voltage dependent anion channels (VDAC) are highly conserved proteins that are responsible for permeability of the mitochondrial outer membrane to hydrophilic metabolites like ATP, ADP and respiratory substrates. Although previously assumed to remain open, VDAC closure is emerging as an important mechanism for regulation of global mitochondrial metabolism in apoptotic cells and also in cells that are not dying. During hepatic ethanol oxidation to acetaldehyde, VDAC closure suppresses exchange of mitochondrial metabolites, resulting in inhibition of ureagenesis. In vivo, VDAC closure after ethanol occurs coordinately with mitochondrial uncoupling. Since acetaldehyde passes through membranes independently of channels and transporters, VDAC closure and uncoupling together foster selective and more rapid oxidative metabolism of toxic acetaldehyde to nontoxic acetate by mitochondrial aldehyde dehydrogenase. In single reconstituted VDAC, tubulin decreases VDAC conductance, and in HepG2 hepatoma cells, free tubulin negatively modulates mitochondrial membrane potential, an effect enhanced by protein kinase A. Tubulin-dependent closure of VDAC in cancer cells contributes to suppression of mitochondrial metabolism and may underlie the Warburg phenomenon of aerobic glycolysis. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.


Assuntos
Etanol/metabolismo , Glicólise , Mitocôndrias/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Animais , Humanos , Modelos Biológicos , Neoplasias/metabolismo
10.
Front Oncol ; 13: 1152553, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37427141

RESUMO

Mitochondrial metabolism is an important contributor to cancer cell survival and proliferation that coexists with enhanced glycolytic activity. Measuring mitochondrial activity is useful to characterize cancer metabolism patterns, to identify metabolic vulnerabilities and to identify new drug targets. Optical imaging, especially fluorescent microscopy, is one of the most valuable tools for studying mitochondrial bioenergetics because it provides semiquantitative and quantitative readouts as well as spatiotemporal resolution of mitochondrial metabolism. This review aims to acquaint the reader with microscopy imaging techniques currently used to determine mitochondrial membrane potential (ΔΨm), nicotinamide adenine dinucleotide (NADH), ATP and reactive oxygen species (ROS) that are major readouts of mitochondrial metabolism. We describe features, advantages, and limitations of the most used fluorescence imaging modalities: widefield, confocal and multiphoton microscopy, and fluorescent lifetime imaging (FLIM). We also discus relevant aspects of image processing. We briefly describe the role and production of NADH, NADHP, flavins and various ROS including superoxide and hydrogen peroxide and discuss how these parameters can be analyzed by fluorescent microscopy. We also explain the importance, value, and limitations of label-free autofluorescence imaging of NAD(P)H and FAD. Practical hints for the use of fluorescent probes and newly developed sensors for imaging ΔΨm, ATP and ROS are described. Overall, we provide updated information about the use of microscopy to study cancer metabolism that will be of interest to all investigators regardless of their level of expertise in the field.

11.
J Pharmacol Exp Ther ; 342(3): 637-41, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22700429

RESUMO

The bioenergetics of cancer cells is characterized by a high rate of aerobic glycolysis and suppression of mitochondrial metabolism (Warburg phenomenon). Mitochondrial metabolism requires inward and outward flux of hydrophilic metabolites, including ATP, ADP and respiratory substrates, through voltage-dependent anion channels (VDACs) in the mitochondrial outer membrane. Although VDACs were once considered to be constitutively open, closure of the VDAC is emerging as an adjustable limiter (governator) of mitochondrial metabolism. Studies of VDACs reconstituted into planar lipid bilayers show that tubulin at nanomolar concentrations decreases VDAC conductance. In tumor cell lines, microtubule-destabilizing agents increase cytoplasmic free tubulin and decrease mitochondrial membrane potential (ΔΨ(m)), whereas microtubule stabilization increases ΔΨ(m). Tubulin-dependent suppression of ΔΨ(m) is further potentiated by protein kinase A activation and glycogen synthase kinase-3ß inhibition. Knockdown of different VDAC isoforms, especially of the least abundant isoform, VDAC3, also decreases ΔΨ(m), cellular ATP, and NADH/NAD+, suggesting that VDAC1 and VDAC2 are most inhibited by free tubulin. The brake on mitochondrial metabolism imposed by the VDAC governator probably is released when spindles form and free tubulin decreases as cells enter mitosis, which better provides for the high ATP demands of chromosome separation and cytokinesis. In conclusion, tubulin-dependent closure of VDACs represents a new mechanism contributing to the suppression of mitochondrial metabolism in the Warburg phenomenon.


Assuntos
Mitocôndrias/metabolismo , Neoplasias/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Animais , Metabolismo Energético , Humanos , Redes e Vias Metabólicas
12.
Methods Mol Biol ; 2497: 1-10, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771432

RESUMO

Assessment of mitochondrial metabolism is multidimensional and time consuming, usually requiring specific training. Respiration, NADH generation, and mitochondrial membrane potential (ΔΨm) are dynamic readouts of the metabolism and bioenergetics of mitochondria. Methodologies available to determine functional parameters in isolated mitochondria and permeabilized cells are sometimes of limited use or inapplicable to studies in live cells. In particular, the sequential assessment of the activity of each complex in the electron transport chain has not been reported in intact cells. Here, we describe a novel approach to sequentially assess electron flow through all respiratory complexes in permeabilized and intact cells by respirometry. We also describe a highly sensitive and fast method to assess ΔΨm and NADH generation in live cells using plate reader assays. Thus, our combined method allows a relatively inexpensive and fast determination of three major readouts of mitochondrial function in a few hours, using equipment that is frequently available in many laboratories worldwide.


Assuntos
NAD , Consumo de Oxigênio , Respiração Celular , Metabolismo Energético , Mitocôndrias/metabolismo , NAD/metabolismo
13.
Biomed Pharmacother ; 150: 112928, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35447542

RESUMO

Voltage dependent anion channels (VDAC) control the flux of most anionic respiratory substrates, ATP, ADP, and small cations, crossing the outer mitochondrial membrane. VDAC closure contributes to the partial suppression of mitochondrial metabolism that favors the Warburg phenotype of cancer cells. Recently, it has been shown that NADH binds to a specific pocket in the inner surface of VDAC1, also conserved in VDAC2 and 3, closing the channel. We hypothesized that binding of small molecules to the NADH pocket, maintain VDAC in an open configuration by preventing closure induced by NADH and possible other endogenous regulators. We screened in silico, the South Carolina Compound Collection SC3 (~100,000 proprietary molecules), using shape-based queries of the NADH binding region of VDAC. After molecular docking of selected compounds, we physically screened candidates using mitochondrial membrane potential (ΔΨm), as an overall readout of mitochondrial metabolism. We identified SC18, as the most potent compound. SC18 bound to VDAC1, as assessed by a thermal shift assay. Short-term treatment with SC18 decreased ΔΨm in SNU-449 and HepG2 human hepatocarcinoma cells. Mitochondrial depolarization was similar in wild type, VDAC1/2, 1/3, and 2/3 double KO HepG2 cells indicating that the effect of SC18 was not VDAC isoform-dependent. In addition, SC18 decreased mitochondrial NADH and cellular ATP production; and increased basal respiration. Long-term exposure to SC18, decreased cell proliferation as determined by wound-healing and cell viability assays. In summary, SC18 is a novel VDAC-targeting small molecule that induces mitochondrial dysfunction and inhibits cell proliferation.


Assuntos
Neoplasias Hepáticas , NAD , Trifosfato de Adenosina/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Mitocôndrias , Simulação de Acoplamento Molecular , NAD/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
14.
Cancer Res ; 82(10): 1969-1990, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35404405

RESUMO

Mitochondria and endoplasmic reticulum (ER) share structural and functional networks and activate well-orchestrated signaling processes to shape cells' fate and function. While persistent ER stress (ERS) response leads to mitochondrial collapse, moderate ERS promotes mitochondrial function. Strategies to boost antitumor T-cell function by targeting ER-mitochondria cross-talk have not yet been exploited. Here, we used carbon monoxide (CO), a short-lived gaseous molecule, to test whether engaging moderate ERS conditions can improve mitochondrial and antitumor functions in T cells. In melanoma antigen-specific T cells, CO-induced transient activation of ERS sensor protein kinase R-like endoplasmic reticulum kinase (PERK) significantly increased antitumor T-cell function. Furthermore, CO-induced PERK activation temporarily halted protein translation and induced protective autophagy, including mitophagy. The use of LC3-GFP enabled differentiation between the cells that prepare themselves to undergo active autophagy (LC3-GFPpos) and those that fail to enter the process (LC3-GFPneg). LC3-GFPpos T cells showed strong antitumor potential, whereas LC3-GFPneg cells exhibited a T regulatory-like phenotype, harbored dysfunctional mitochondria, and accumulated abnormal metabolite content. These anomalous ratios of metabolites rendered the cells with a hypermethylated state and distinct epigenetic profile, limiting their antitumor activity. Overall, this study shows that ERS-activated autophagy pathways modify the mitochondrial function and epigenetically reprogram T cells toward a superior antitumor phenotype to achieve robust tumor control. SIGNIFICANCE: Transient activation of ER stress with carbon monoxide drives mitochondrial biogenesis and protective autophagy that elicits superior antitumor T-cell function, revealing an approach to improving adoptive cell efficacy therapy.


Assuntos
Monóxido de Carbono , eIF-2 Quinase , Apoptose , Autofagia , Monóxido de Carbono/farmacologia , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Linfócitos T/metabolismo , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
15.
Front Physiol ; 12: 742839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658929

RESUMO

Most anionic metabolites including respiratory substrates, glycolytic adenosine triphosphate (ATP), and small cations that enter mitochondria, and mitochondrial ATP moving to the cytosol, cross the outer mitochondrial membrane (OMM) through voltage dependent anion channels (VDAC). The closed states of VDAC block the passage of anionic metabolites, and increase the flux of small cations, including calcium. Consequently, physiological or pharmacological regulation of VDAC opening, by conditioning the magnitude of both anion and cation fluxes, is a major contributor to mitochondrial metabolism. Tumor cells display a pro-proliferative Warburg phenotype characterized by enhanced aerobic glycolysis in the presence of partial suppression of mitochondrial metabolism. The heterogeneous and flexible metabolic traits of most human tumors render cells able to adapt to the constantly changing energetic and biosynthetic demands by switching between predominantly glycolytic or oxidative phenotypes. Here, we describe the biological consequences of changes in the conformational state of VDAC for cancer metabolism, the mechanisms by which VDAC-openers promote cancer cell death, and the advantages of VDAC opening as a valuable pharmacological target. Particular emphasis is given to the endogenous regulation of VDAC by free tubulin and the effects of VDAC-tubulin antagonists in cancer cells. Because of its function and location, VDAC operates as a switch to turn-off mitochondrial metabolism (closed state) and increase aerobic glycolysis (pro-Warburg), or to turn-on mitochondrial metabolism (open state) and decrease glycolysis (anti-Warburg). A better understanding of the role of VDAC regulation in tumor progression is relevant both for cancer biology and for developing novel cancer chemotherapies.

16.
Cancer Res ; 67(14): 6973-80, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17638909

RESUMO

Doxorubicin disrupts spermatogenesis by causing apoptosis of spermatogonia and primary spermatocytes. The aim of this study was to examine the effect of this agent on adult rat testicular lipids and their fatty acids. A single dose (7.5 mg/kg) and a multidose regime (3 mg/kg once a week for 4 weeks) were evaluated. Both treatments resulted in the gradual loss of spermatogenic cells and determined a marked reduction in testicular size and weight 9 weeks after their start. Germ cell loss was accompanied by a decrease in phospholipids, including glycerophospholipids and sphingomyelin. Concomitantly, glycerophospholipids lost selectively their major polyunsaturated fatty acid (PUFA), 22:5n-6, and sphingomyelin lost its major very long-chain PUFA (VLCPUFA), 28:4n-6 and 30:5n-6. The molecular species from which the lost polyenes originated were thus a trait of germ cells. A transient peak of 16:0-ceramide was observed 48 h after the single dose. In both doxorubicin regimes, sphingomyelin and ceramide with reduced amounts of VLCPUFA after about 4 weeks and with no VLCPUFA after 9 weeks resulted. By contrast, triglycerides and especially cholesterol esters (CE) tended to accumulate in the testes undergoing germ cell death, probably in the surviving Sertoli cells, their fatty acid patterns suggesting that initially, these lipids retained part of the PUFA coming from, or no longer used for, the synthesis of germ cell glycerophospholipids. As the latter decreased, CE accumulated massively 9 weeks after starting doxorubicin treatment, 20:4n-6 becoming their major PUFA. Part of these CEs may derive from surviving steroidogenic cells.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Ácidos Graxos Insaturados/química , Lipídeos/química , Testículo/metabolismo , Animais , Ésteres do Colesterol/química , Glicerofosfolipídeos/química , Metabolismo dos Lipídeos , Masculino , Ratos , Ratos Wistar , Células de Sertoli/metabolismo , Esfingomielinas/metabolismo , Fatores de Tempo
17.
Front Physiol ; 10: 1588, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32116733

RESUMO

Salt-sensitive (SS) hypertension is accompanied with an early onset of proteinuria, which results from the loss of glomerular podocytes. Here, we hypothesized that glomerular damage in the SS hypertension occurs in part due to mitochondria dysfunction, and we used a unique model of freshly isolated glomeruli to test this hypothesis. In order to mimic SS hypertension, we used Dahl SS rats, an established animal model. Animals were fed a 0.4% NaCl (normal salt, NS) diet or challenged with a high salt (HS) 4% NaCl diet for 21 days to induce an increase in blood pressure (BP). Similar to previous studies, we found that HS diet caused renal hypertrophy, increased BP, glomerulosclerosis, and renal lesions such as fibrosis and protein casts. We did not observe changes in mitochondrial biogenesis in the renal cortex or isolated glomeruli fractions. However, Seahorse assay performed on freshly isolated glomeruli revealed that basal mitochondrial respiration, maximal respiration, and spare respiratory capacity were lower in the HS compared to the NS group. Using confocal imaging and staining for mitochondrial H2O2 using mitoPY1, we detected an intensified response to an acute H2O2 application in the podocytes of the glomeruli isolated from the HS diet fed group. TEM analysis showed that glomerular mitochondria from the HS diet fed group have structural abnormalities (swelling, enlargement, less defined cristae). Therefore, we report that glomerular mitochondria in SS hypertension are functionally and structurally defective, and this impairment could eventually lead to loss of podocytes and proteinuria. Thus, the glomerular-mitochondria axis can be targeted in novel treatment strategies for hypertensive glomerulosclerosis.

18.
Adv Cancer Res ; 138: 41-69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29551129

RESUMO

Cancer metabolism is emerging as a chemotherapeutic target. Enhanced glycolysis and suppression of mitochondrial metabolism characterize the Warburg phenotype in cancer cells. The flux of respiratory substrates, ADP, and Pi into mitochondria and the release of mitochondrial ATP to the cytosol occur through voltage-dependent anion channels (VDACs) located in the mitochondrial outer membrane. Catabolism of respiratory substrates in the Krebs cycle generates NADH and FADH2 that enter the electron transport chain (ETC) to generate a proton motive force that maintains mitochondrial membrane potential (ΔΨ) and is utilized to generate ATP. The ETC is also the major cellular source of mitochondrial reactive oxygen species (ROS). αß-Tubulin heterodimers decrease VDAC conductance in lipid bilayers. High constitutive levels of cytosolic free tubulin in intact cancer cells close VDAC decreasing mitochondrial ΔΨ and mitochondrial metabolism. The VDAC-tubulin interaction regulates VDAC opening and globally controls mitochondrial metabolism, ROS formation, and the intracellular flow of energy. Erastin, a VDAC-binding molecule lethal to some cancer cell types, and erastin-like compounds identified in a high-throughput screening antagonize the inhibitory effect of tubulin on VDAC. Reversal of tubulin inhibition of VDAC increases VDAC conductance and the flux of metabolites into and out of mitochondria. VDAC opening promotes a higher mitochondrial ΔΨ and a global increase in mitochondrial metabolism leading to high cytosolic ATP/ADP ratios that inhibit glycolysis. VDAC opening also increases ROS production causing oxidative stress that, in turn, leads to mitochondrial dysfunction, bioenergetic failure, and cell death. In summary, antagonism of the VDAC-tubulin interaction promotes cell death by a "double-hit model" characterized by reversion of the proproliferative Warburg phenotype (anti-Warburg) and promotion of oxidative stress.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias/patologia , Canais de Ânion Dependentes de Voltagem/metabolismo , Animais , Metabolismo Energético , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
19.
SLAS Discov ; 23(1): 23-33, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024608

RESUMO

In Warburg metabolism, suppression of mitochondrial metabolism contributes to a low cytosolic ATP/ADP ratio favoring enhanced aerobic glycolysis. Flux of metabolites across the mitochondrial outer membrane occurs through voltage-dependent anion channels (VDAC). In cancer cells, free dimeric tubulin induces VDAC closure and dynamically regulates mitochondrial membrane potential (ΔΨ). Erastin, a small molecule that binds to VDAC, antagonizes the inhibitory effect of tubulin on VDAC and hyperpolarizes mitochondria in intact cells. Here, our aim was to identify novel compounds from the ChemBridge DIVERSet library that block the inhibitory effect of tubulin on ΔΨ using cell-based screening. HCC4006 cells were treated with nocodazole (NCZ) to increase free tubulin and decrease ΔΨ in the presence or absence of library compounds. Tetramethylrhodamine methylester (TMRM) fluorescence was assessed by high-content imaging to determine changes in ΔΨ. Compounds were considered positive if ΔΨ increased in the presence of NCZ. Using confocal microscopy, we identified and validated six lead molecules that antagonized the depolarizing effect of NCZ. Lead compounds and erastin did not promote microtubule stabilization, so changes in ΔΨ were independent of tubulin dynamics. The most potent lead compound also decreased lactate formation. These novel small molecules represent a potential new class of anti-Warburg drugs.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Lactatos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Piperazinas/farmacologia , Tubulina (Proteína)/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Imagem Molecular , Estrutura Molecular , Nocodazol/farmacologia , Piperazinas/química , Multimerização Proteica/efeitos dos fármacos , Tubulina (Proteína)/química , Canais de Ânion Dependentes de Voltagem/metabolismo , Fluxo de Trabalho
20.
Biochem Pharmacol ; 148: 155-162, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29289511

RESUMO

Enhancement of aerobic glycolysis and suppression of mitochondrial metabolism characterize the pro-proliferative Warburg phenotype of cancer cells. High free tubulin in cancer cells closes voltage dependent anion channels (VDAC) to decrease mitochondrial membrane potential (ΔΨ), an effect antagonized by erastin, the canonical promotor of ferroptosis. Previously, we identified six compounds (X1-X6) that also block tubulin-dependent mitochondrial depolarization. Here, we hypothesized that VDAC opening after erastin and X1-X6 increases mitochondrial metabolism and reactive oxygen species (ROS) formation, leading to ROS-dependent mitochondrial dysfunction, bioenergetic failure and cell death. Accordingly, we characterized erastin and the two most potent structurally unrelated lead compounds, X1 and X4, on ROS formation, mitochondrial function and cell viability. Erastin, X1 and X4 increased ΔΨ followed closely by an increase in mitochondrial ROS generation within 30-60 min. Subsequently, mitochondria began to depolarize after an hour or longer indicative of mitochondrial dysfunction. N-acetylcysteine (NAC, glutathione precursor and ROS scavenger) and MitoQ (mitochondrially targeted antioxidant) blocked increased ROS formation after X1 and prevented mitochondrial dysfunction. Erastin, X1 and X4 selectively promoted cell killing in HepG2 and Huh7 human hepatocarcinoma cells compared to primary rat hepatocytes. X1 and X4-dependent cell death was blocked by NAC. These results suggest that ferroptosis induced by erastin and our erastin-like lead compounds was caused by VDAC opening, leading to increased ΔΨ, mitochondrial ROS generation and oxidative stress-induced cell death.


Assuntos
Mitocôndrias/efeitos dos fármacos , Animais , Morte Celular , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Estrutura Molecular , Piperazinas/farmacologia , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Canais de Ânion Dependentes de Voltagem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa