RESUMO
The precise regulation of DNA replication is vital for cellular division and genomic integrity. Central to this process is the replication factor C (RFC) complex, encompassing five subunits, which loads proliferating cell nuclear antigen onto DNA to facilitate the recruitment of replication and repair proteins and enhance DNA polymerase processivity. While RFC1's role in cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is known, the contributions of RFC2-5 subunits on human Mendelian disorders is largely unexplored. Our research links bi-allelic variants in RFC4, encoding a core RFC complex subunit, to an undiagnosed disorder characterized by incoordination and muscle weakness, hearing impairment, and decreased body weight. We discovered across nine affected individuals rare, conserved, predicted pathogenic variants in RFC4, all likely to disrupt the C-terminal domain indispensable for RFC complex formation. Analysis of a previously determined cryo-EM structure of RFC bound to proliferating cell nuclear antigen suggested that the variants disrupt interactions within RFC4 and/or destabilize the RFC complex. Cellular studies using RFC4-deficient HeLa cells and primary fibroblasts demonstrated decreased RFC4 protein, compromised stability of the other RFC complex subunits, and perturbed RFC complex formation. Additionally, functional studies of the RFC4 variants affirmed diminished RFC complex formation, and cell cycle studies suggested perturbation of DNA replication and cell cycle progression. Our integrated approach of combining in silico, structural, cellular, and functional analyses establishes compelling evidence that bi-allelic loss-of-function RFC4 variants contribute to the pathogenesis of this multisystemic disorder. These insights broaden our understanding of the RFC complex and its role in human health and disease.
Assuntos
Proteína de Replicação C , Humanos , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Masculino , Células HeLa , Feminino , Fenótipo , Replicação do DNA/genética , Adulto , Mutação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , AlelosRESUMO
The vast majority of human genes encode multiple isoforms through alternative splicing, and the temporal and spatial regulation of those isoforms is critical for organismal development and function. The spliceosome, which regulates and executes splicing reactions, is primarily composed of small nuclear ribonucleoproteins (snRNPs) that consist of small nuclear RNAs (snRNAs) and protein subunits. snRNA gene transcription is initiated by the snRNA-activating protein complex (SNAPc). Here, we report ten individuals, from eight families, with bi-allelic, deleterious SNAPC4 variants. SNAPC4 encoded one of the five SNAPc subunits that is critical for DNA binding. Most affected individuals presented with delayed motor development and developmental regression after the first year of life, followed by progressive spasticity that led to gait alterations, paraparesis, and oromotor dysfunction. Most individuals had cerebral, cerebellar, or basal ganglia volume loss by brain MRI. In the available cells from affected individuals, SNAPC4 abundance was decreased compared to unaffected controls, suggesting that the bi-allelic variants affect SNAPC4 accumulation. The depletion of SNAPC4 levels in HeLa cell lines via genomic editing led to decreased snRNA expression and global dysregulation of alternative splicing. Analysis of available fibroblasts from affected individuals showed decreased snRNA expression and global dysregulation of alternative splicing compared to unaffected cells. Altogether, these data suggest that these bi-allelic SNAPC4 variants result in loss of function and underlie the neuroregression and progressive spasticity in these affected individuals.
Assuntos
Processamento Alternativo , Proteínas de Ligação a DNA , Paraparesia Espástica , Fatores de Transcrição , Paraparesia Espástica/genética , Humanos , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Células HeLa , Isoformas de Proteínas/genética , RNA-Seq , Masculino , Feminino , Linhagem , Alelos , Lactente , Pré-Escolar , Criança , Adolescente , Estrutura Secundária de Proteína , RNA Nuclear Pequeno/genéticaRESUMO
INTRODUCTION: Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disorder characterised by partial oculocutaneous albinism, a bleeding diathesis, immunological dysfunction and neurological impairment. Bi-allelic loss-of-function variants in LYST cause CHS. LYST encodes the lysosomal trafficking regulator, a highly conserved 429 kDa cytoplasmic protein with an unknown function. METHODS: To further our understanding of the pathogenesis of CHS, we conducted clinical evaluations on individuals with CHS enrolled in our natural history study. Using genomic DNA Sanger sequencing, we identified novel pathogenic LYST variants. Additionally, we performed an extensive literature review to curate reported LYST variants and classified these novel and reported variants according to the American College of Medical Genetics/Association for Molecular Pathology variant interpretation guidelines. RESULTS: Our investigation unveiled 11 novel pathogenic LYST variants in eight patients with a clinical diagnosis of CHS, substantiated by the presence of pathognomonic giant intracellular granules. From these novel variants, together with a comprehensive review of the literature, we compiled a total of 147 variants in LYST, including 61 frameshift variants (41%), 44 nonsense variants (30%), 23 missense variants (16%), 13 splice site variants or small genomic deletions for which the coding effect is unknown (9%), 5 in-frame variants (3%) and 1 start-loss variant (1%). Notably, a genotype-phenotype correlation emerged, whereby individuals harbouring at least one missense or in-frame variant generally resulted in milder disease, while those with two nonsense or frameshift variants generally had more severe disease. CONCLUSION: The identification of novel pathogenic LYST variants and improvements in variant classification will provide earlier diagnoses and improved care to individuals with CHS.
Assuntos
Síndrome de Chediak-Higashi , Humanos , Síndrome de Chediak-Higashi/genética , Síndrome de Chediak-Higashi/diagnóstico , Síndrome de Chediak-Higashi/patologia , Mutação , Proteínas/genética , Mutação de Sentido Incorreto , Sequência de Bases , Proteínas de Transporte Vesicular/genéticaRESUMO
DDX41 (DEADbox helicase 41) is a member of the largest family of RNA helicases. The DEAD-box RNA helicases share a highly conserved core structure and regulate all aspects of RNA metabolism. The functional role of DDX41 in innate immunity is also highly conserved. DDX41 acts as a sensor of viral DNA and activates the STING-TBK1-IRF3-type I IFN signaling pathway. Germline heterozygous variants in DDX41 have been reported in familial myelodysplasia syndrome (MDS)/acute myeloid leukemia (AML) patients; most patients also acquired a somatic variant in the second DDX41 allele. Here, we report a patient who inherited compound heterozygous DDX41 variants and presented with bone dysplasia, ichthyosis, and dysmorphic features. Functional analyses of the patient-derived dermal fibroblasts revealed a reduced abundance of DDX41 and abrogated activation of the IFN genes through the STING-type I interferon pathway. Genome-wide transcriptome analyses in the patient's fibroblasts revealed significant gene dysregulation and changes in the RNA splicing events. The patient's fibroblasts also displayed upregulation of periostin mRNA expression. Using an RNA binding protein assay, we identified DDX41 as a novel regulator of periostin expression. Our results suggest that functional impairment of DDX41, along with dysregulated periostin expression, likely contributes to this patient's multisystem disorder.
RESUMO
The aetiology of nodding syndrome remains unclear, and comprehensive genotyping and phenotyping data from patients remain sparse. Our objectives were to characterize the phenotype of patients with nodding syndrome, investigate potential contributors to disease aetiology, and evaluate response to immunotherapy. This cohort study investigated members of a single-family unit from Lamwo District, Uganda. The participants for this study were selected by the Ugandan Ministry of Health as representative for nodding syndrome and with a conducive family structure for genomic analyses. Of the eight family members who participated in the study at the National Institutes of Health (NIH) Clinical Center, three had nodding syndrome. The three affected patients were extensively evaluated with metagenomic sequencing for infectious pathogens, exome sequencing, spinal fluid immune analyses, neurometabolic and toxicology testing, continuous electroencephalography and neuroimaging. Five unaffected family members underwent a subset of testing for comparison. A distinctive interictal pattern of sleep-activated bursts of generalized and multifocal epileptiform discharges and slowing was observed in two patients. Brain imaging showed two patients had mild generalized cerebral atrophy, and both patients and unaffected family members had excessive metal deposition in the basal ganglia. Trace metal biochemical evaluation was normal. CSF was non-inflammatory and one patient had CSF-restricted oligoclonal bands. Onchocerca volvulus-specific antibodies were present in all patients and skin snips were negative for active onchocerciasis. Metagenomic sequencing of serum and CSF revealed hepatitis B virus in the serum of one patient. Vitamin B6 metabolites were borderline low in all family members and CSF pyridoxine metabolites were normal. Mitochondrial DNA testing was normal. Exome sequencing did not identify potentially causal candidate gene variants. Nodding syndrome is characterized by a distinctive pattern of sleep-activated epileptiform activity. The associated growth stunting may be due to hypothalamic dysfunction. Extensive testing years after disease onset did not clarify a causal aetiology. A trial of immunomodulation (plasmapheresis in two patients and intravenous immunoglobulin in one patient) was given without short-term effect, but longer-term follow-up was not possible to fully assess any benefit of this intervention.
Assuntos
Síndrome do Cabeceio , Oncocercose , Estados Unidos , Humanos , Estudos de Coortes , Imunomodulação , GenômicaRESUMO
Chediak-Higashi syndrome (CHS) is a rare, autosomal recessive disorder caused by biallelic mutations in the lysosomal trafficking regulator (LYST) gene. Even though enlarged lysosomes and/or lysosome-related organelles (LROs) are the typical cellular hallmarks of CHS, they have not been investigated in human neuronal models. Moreover, how and why the loss of LYST function causes a lysosome phenotype in cells has not been elucidated. We report that the LYST-deficient human neuronal model exhibits lysosome depletion accompanied by hyperelongated tubules extruding from enlarged autolysosomes. These results have also been recapitulated in neurons differentiated from CHS patients' induced pluripotent stem cells (iPSCs), validating our model system. We propose that LYST ensures the correct fission/scission of the autolysosome tubules during autophagic lysosome reformation (ALR), a crucial process to restore the number of free lysosomes after autophagy. We further demonstrate that LYST is recruited to the lysosome membrane, likely to facilitate the fission of autolysosome tubules. Together, our results highlight the key role of LYST in maintaining lysosomal homeostasis following autophagy and suggest that ALR dysregulation is likely associated with the neurodegenerative CHS phenotype.
Assuntos
Síndrome de Chediak-Higashi , Proteínas de Transporte Vesicular , Humanos , Proteínas de Transporte Vesicular/genética , Lisossomos/fisiologia , Organelas , Autofagia/fisiologia , Síndrome de Chediak-Higashi/genética , NeurôniosRESUMO
PURPOSE OF REVIEW: Chediak-Higashi syndrome is a rare autosomal recessive disorder characterized by congenital immunodeficiency, bleeding diathesis, pyogenic infection, partial oculocutaneous albinism, and progressive neurodegeneration. Treatment is hematopoietic stem cell transplantation or bone marrow transplantation; however, this does not treat the neurologic aspect of the disease. Mutations in the lysosomal trafficking regulator (LYST) gene were identified to be causative of Chediak-Higashi, but despite many analyses, there is little functional information about the LYST protein. This review serves to provide an update on the clinical manifestations and cellular defects of Chediak-Higashi syndrome. RECENT FINDINGS: More recent papers expand the neurological spectrum of disease in CHS, to include hereditary spastic paraplegia and parkinsonism. Granule size and distribution in NK cells have been investigated in relation to the location of mutations in LYST. Patients with mutations in the ARM/HEAT domain had markedly enlarged granules, but fewer in number. By contrast, patients with mutations in the BEACH domain had more numerous granules that were normal in size to slightly enlarged, but demonstrated markedly impaired polarization. The role of LYST in autophagosome formation has been highlighted in recent studies; LYST was defined to have a prominent role in autophagosome lysosome reformation for the maintenance of lysosomal homeostasis in neurons, while in retinal pigment epithelium cells, LYST deficiency was shown to lead to phagosome accumulation. SUMMARY: Despite CHS being a rare disease, investigation into LYST provides an understanding of basic vesicular fusion and fission. Understanding of these mechanisms may provide further insight into the function of LYST.
Assuntos
Síndrome de Chediak-Higashi , Humanos , Síndrome de Chediak-Higashi/diagnóstico , Síndrome de Chediak-Higashi/genética , Síndrome de Chediak-Higashi/terapia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Lisossomos/metabolismo , Transplante de Medula Óssea , MutaçãoRESUMO
PURPOSE: Myocardin-related transcription factor B (MRTFB) is an important transcriptional regulator, which promotes the activity of an estimated 300 genes but is not known to underlie a Mendelian disorder. METHODS: Probands were identified through the efforts of the Undiagnosed Disease Network. Because the MRTFB protein is highly conserved between vertebrate and invertebrate model organisms, we generated a humanized Drosophila model expressing the human MRTFB protein in the same spatial and temporal pattern as the fly gene. Actin binding assays were used to validate the effect of the variants on MRTFB. RESULTS: Here, we report 2 pediatric probands with de novo variants in MRTFB (p.R104G and p.A91P) and mild dysmorphic features, intellectual disability, global developmental delays, speech apraxia, and impulse control issues. Expression of the variants within wing tissues of a fruit fly model resulted in changes in wing morphology. The MRTFBR104G and MRTFBA91P variants also display a decreased level of actin binding within critical RPEL domains, resulting in increased transcriptional activity and changes in the organization of the actin cytoskeleton. CONCLUSION: The MRTFBR104G and MRTFBA91P variants affect the regulation of the protein and underlie a novel neurodevelopmental disorder. Overall, our data suggest that these variants act as a gain of function.
Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Criança , Humanos , Drosophila/genética , Actinas/genética , Mutação com Ganho de Função , Fatores de Transcrição/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , FenótipoRESUMO
PURPOSE: To summarise the clinical, molecular and biochemical phenotype of mannosyl-oligosaccharide glucosidase-related congenital disorders of glycosylation (MOGS-CDG), which presents with variable clinical manifestations, and to analyse which clinical biochemical assay consistently supports diagnosis in individuals with bi-allelic variants in MOGS. METHODS: Phenotypic characterisation was performed through an international and multicentre collaboration. Genetic testing was done by exome sequencing and targeted arrays. Biochemical assays on serum and urine were performed to delineate the biochemical signature of MOGS-CDG. RESULTS: Clinical phenotyping revealed heterogeneity in MOGS-CDG, including neurological, immunological and skeletal phenotypes. Bi-allelic variants in MOGS were identified in 12 individuals from 11 families. The severity in each organ system was variable, without definite genotype correlation. Urine oligosaccharide analysis was consistently abnormal for all affected probands, whereas other biochemical analyses such as serum transferrin analysis was not consistently abnormal. CONCLUSION: The clinical phenotype of MOGS-CDG includes multisystemic involvement with variable severity. Molecular analysis, combined with biochemical testing, is important for diagnosis. In MOGS-CDG, urine oligosaccharide analysis via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry can be used as a reliable biochemical test for screening and confirmation of disease.
RESUMO
[This corrects the article DOI: 10.1371/journal.pgen.1008841.].
RESUMO
Hypomyelination, a neurological condition characterized by decreased production of myelin sheets by glial cells, often has no known etiology. Elucidating the genetic causes of hypomyelination provides a better understanding of myelination, as well as means to diagnose, council, and treat patients. Here, we present evidence that YIPPEE LIKE 3 (YPEL3), a gene whose developmental role was previously unknown, is required for central and peripheral glial cell development. We identified a child with a constellation of clinical features including cerebral hypomyelination, abnormal peripheral nerve conduction, hypotonia, areflexia, and hypertrophic peripheral nerves. Exome and genome sequencing revealed a de novo mutation that creates a frameshift in the open reading frame of YPEL3, leading to an early stop codon. We used zebrafish as a model system to validate that YPEL3 mutations are causative of neuropathy. We found that ypel3 is expressed in the zebrafish central and peripheral nervous system. Using CRISPR/Cas9 technology, we created zebrafish mutants carrying a genomic lesion similar to that of the patient. Our analysis revealed that Ypel3 is required for development of oligodendrocyte precursor cells, timely exit of the perineurial glial precursors from the central nervous system (CNS), formation of the perineurium, and Schwann cell maturation. Consistent with these observations, zebrafish ypel3 mutants have metabolomic signatures characteristic of oligodendrocyte and Schwann cell differentiation defects, show decreased levels of Myelin basic protein in the central and peripheral nervous system, and develop defasciculated peripheral nerves. Locomotion defects were observed in adult zebrafish ypel3 mutants. These studies demonstrate that Ypel3 is a novel gene required for perineurial cell development and glial myelination.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Bainha de Mielina/patologia , Neurogênese/genética , Proteínas Supressoras de Tumor/genética , Animais , Plexo Braquial/diagnóstico por imagem , Criança , Análise Mutacional de DNA , Modelos Animais de Doenças , Embrião não Mamífero , Feminino , Mutação da Fase de Leitura , Substância Cinzenta/diagnóstico por imagem , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico por imagem , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Humanos , Imageamento por Ressonância Magnética , Neuroglia/patologia , Oligodendroglia , Nervo Isquiático/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Sequenciamento do Exoma , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
Optimal lysosome function requires maintenance of an acidic pH maintained by proton pumps in combination with a counterion transporter such as the Cl-/H+ exchanger, CLCN7 (ClC-7), encoded by CLCN7. The role of ClC-7 in maintaining lysosomal pH has been controversial. In this paper, we performed clinical and genetic evaluations of two children of different ethnicities. Both children had delayed myelination and development, organomegaly, and hypopigmentation, but neither had osteopetrosis. Whole-exome and -genome sequencing revealed a de novo c.2144A>G variant in CLCN7 in both affected children. This p.Tyr715Cys variant, located in the C-terminal domain of ClC-7, resulted in increased outward currents when it was heterologously expressed in Xenopus oocytes. Fibroblasts from probands displayed a lysosomal pH approximately 0.2 units lower than that of control cells, and treatment with chloroquine normalized the pH. Primary fibroblasts from both probands also exhibited markedly enlarged intracellular vacuoles; this finding was recapitulated by the overexpression of human p.Tyr715Cys CLCN7 in control fibroblasts, reflecting the dominant, gain-of-function nature of the variant. A mouse harboring the knock-in Clcn7 variant exhibited hypopigmentation, hepatomegaly resulting from abnormal storage, and enlarged vacuoles in cultured fibroblasts. Our results show that p.Tyr715Cys is a gain-of-function CLCN7 variant associated with developmental delay, organomegaly, and hypopigmentation resulting from lysosomal hyperacidity, abnormal storage, and enlarged intracellular vacuoles. Our data supports the hypothesis that the ClC-7 antiporter plays a critical role in maintaining lysosomal pH.
Assuntos
Ácidos/química , Albinismo/etiologia , Canais de Cloreto/genética , Fibroblastos/patologia , Variação Genética , Doenças por Armazenamento dos Lisossomos/etiologia , Lisossomos/metabolismo , Albinismo/metabolismo , Albinismo/patologia , Animais , Canais de Cloreto/fisiologia , Feminino , Fibroblastos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lactente , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Camundongos , Oócitos/metabolismo , Xenopus laevisRESUMO
WD40 repeat-containing proteins form a large family of proteins present in all eukaryotes. Here, we identified five pediatric probands with de novo variants in WDR37, which encodes a member of the WD40 repeat protein family. Two probands shared one variant and the others have variants in nearby amino acids outside the WD40 repeats. The probands exhibited shared phenotypes of epilepsy, colobomas, facial dysmorphology reminiscent of CHARGE syndrome, developmental delay and intellectual disability, and cerebellar hypoplasia. The WDR37 protein is highly conserved in vertebrate and invertebrate model organisms and is currently not associated with a human disease. We generated a null allele of the single Drosophila ortholog to gain functional insights and replaced the coding region of the fly gene CG12333/wdr37 with GAL4. These flies are homozygous viable but display severe bang sensitivity, a phenotype associated with seizures in flies. Additionally, the mutant flies fall when climbing the walls of the vials, suggesting a defect in grip strength, and repeat the cycle of climbing and falling. Similar to wall clinging defect, mutant males often lose grip of the female abdomen during copulation. These phenotypes are rescued by using the GAL4 in the CG12333/wdr37 locus to drive the UAS-human reference WDR37 cDNA. The two variants found in three human subjects failed to rescue these phenotypes, suggesting that these alleles severely affect the function of this protein. Taken together, our data suggest that variants in WDR37 underlie a novel syndromic neurological disorder.
Assuntos
Transtornos Dismórficos Corporais/patologia , Cerebelo/anormalidades , Coloboma/patologia , Deficiências do Desenvolvimento/patologia , Epilepsia/patologia , Deficiência Intelectual/patologia , Mutação , Malformações do Sistema Nervoso/patologia , Repetições WD40/genética , Adulto , Sequência de Aminoácidos , Animais , Transtornos Dismórficos Corporais/genética , Cerebelo/patologia , Criança , Coloboma/genética , Deficiências do Desenvolvimento/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Epilepsia/genética , Feminino , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Malformações do Sistema Nervoso/genética , Fenótipo , Homologia de Sequência , Adulto JovemRESUMO
Pulmonary fibrosis is a progressive and often fatal lung disease that manifests in most patients with Hermansky-Pudlak syndrome (HPS) type 1. Although the pathobiology of HPS pulmonary fibrosis is unknown, several studies highlight the pathogenic roles of different cell types, including type 2 alveolar epithelial cells, alveolar macrophages, fibroblasts, myofibroblasts, and immune cells. Despite the identification of the HPS1 gene and progress in understanding the pathobiology of HPS pulmonary fibrosis, specific treatment for HPS pulmonary fibrosis is not available, emphasizing the need to identify cellular and molecular targets and to develop therapeutic strategies for this devastating disease. This commentary summarizes recent advances and aims to provide insights into gene therapy for HPS pulmonary fibrosis.
Assuntos
Síndrome de Hermanski-Pudlak , Fibrose Pulmonar , Humanos , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/terapia , Síndrome de Hermanski-Pudlak/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/terapia , Pulmão/patologia , Terapia GenéticaRESUMO
Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder characterized by improper biogenesis of lysosome-related organelles (LROs). Lung fibrosis is the leading cause of death among adults with HPS-1 and HPS-4 genetic types, which are associated with defects in the biogenesis of lysosome-related organelles complex-3 (BLOC-3), a guanine exchange factor (GEF) for a small GTPase, Rab32. LROs are not ubiquitously present in all cell types, and specific cells utilize LROs to accomplish dedicated functions. Fibroblasts are not known to contain LROs, and the function of BLOC-3 in fibroblasts is unclear. Here, we report that lung fibroblasts isolated from patients with HPS-1 have increased migration capacity. Silencing HPS-1 in normal lung fibroblasts similarly leads to increased migration. We also show that the increased migration is driven by elevated levels of Myosin IIB. Silencing HPS1 or RAB32 in normal lung fibroblasts leads to increased MYOSIN IIB levels. MYOSIN IIB is downstream of p38-MAPK, which is a known target of angiotensin receptor signaling. Treatment with losartan, an angiotensin receptor inhibitor, decreases MYOSIN IIB levels and impedes HPS lung fibroblast migration in vitro. Furthermore, pharmacologic inhibition of angiotensin receptor with losartan seemed to decrease migration of HPS lung fibroblasts in vivo in a zebrafish xenotransplantation model. Taken together, we demonstrate that BLOC-3 plays an important role in MYOSIN IIB regulation within lung fibroblasts and contributes to fibroblast migration.
Assuntos
Síndrome de Hermanski-Pudlak , Albinismo , Animais , Movimento Celular , Fibroblastos/metabolismo , Transtornos Hemorrágicos , Síndrome de Hermanski-Pudlak/genética , Humanos , Losartan/metabolismo , Pulmão/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Receptores de Angiotensina , Peixe-ZebraRESUMO
BACKGROUND: HPS-1 is a genetic type of Hermansky-Pudlak syndrome (HPS) with highly penetrant pulmonary fibrosis (HPSPF), a restrictive lung disease that is similar to idiopathic pulmonary fibrosis (IPF). Hps1ep/ep (pale ear) is a naturally occurring HPS-1 mouse model that exhibits high sensitivity to bleomycin-induced pulmonary fibrosis (PF). Traditional methods of administering bleomycin as an intratracheal (IT) route to induce PF in this model often lead to severe acute lung injury and high mortality rates, complicating studies focusing on pathobiological mechanisms or exploration of therapeutic options for HPSPF. METHODS: To develop a murine model of HPSPF that closely mimics the progression of human pulmonary fibrosis, we investigated the pulmonary effects of systemic delivery of bleomycin in Hps1ep/ep mice using a subcutaneous minipump and compared results to oropharyngeal delivery of bleomycin. RESULTS: Our study revealed that systemic delivery of bleomycin induced limited, acute inflammation that resolved. The distinct inflammatory phase preceded a slow, gradually progressive fibrogenesis that was shown to be both time-dependent and dose-dependent. The fibrosis phase exhibited characteristics that better resembles human disease with focal regions of fibrosis that were predominantly found in peribronchovascular areas and in subpleural regions; central lung areas contained relatively less fibrosis. CONCLUSION: This model provides a preclinical tool that will allow researchers to study the mechanism of pulmonary fibrosis in HPS and provide a platform for the development of therapeutics to treat HPSPF. This method can be applied on studies of IPF or other monogenic disorders that lead to pulmonary fibrosis.
Assuntos
Síndrome de Hermanski-Pudlak , Fibrose Pulmonar Idiopática , Albinismo , Animais , Bleomicina/toxicidade , Modelos Animais de Doenças , Fibrose , Transtornos Hemorrágicos , Síndrome de Hermanski-Pudlak/induzido quimicamente , Síndrome de Hermanski-Pudlak/genética , Fibrose Pulmonar Idiopática/patologia , Pulmão , CamundongosRESUMO
Living with an undiagnosed medical condition places a tremendous burden on patients, their families, and their healthcare providers. The Undiagnosed Diseases Program (UDP) was established at the National Institutes of Health (NIH) in 2008 with the primary goals of providing a diagnosis for patients with mysterious conditions and advancing medical knowledge about rare and common diseases. The program reviews applications from referring clinicians for cases that are considered undiagnosed despite a thorough evaluation. Those that are accepted receive clinical evaluations involving deep phenotyping and genetic testing that includes exome and genomic sequencing. Selected candidate gene variants are evaluated by collaborators using functional assays. Since its inception, the UDP has received more than 4500 applications and has completed evaluations on nearly 1300 individuals. Here we present six cases that exemplify the discovery of novel disease mechanisms, the importance of deep phenotyping for rare diseases, and how genetic diagnoses have led to appropriate treatment. The creation of the Undiagnosed Diseases Network (UDN) in 2014 has substantially increased the number of patients evaluated and allowed for greater opportunities for data sharing. Expansion to the Undiagnosed Diseases Network International (UDNI) has the possibility to extend this reach even farther. Together, networks of undiagnosed diseases programs are powerful tools to advance our knowledge of pathophysiology, accelerate accurate diagnoses, and improve patient care for patients with rare conditions.
Assuntos
Doenças não Diagnosticadas , Exoma , Humanos , National Institutes of Health (U.S.) , Doenças Raras/diagnóstico , Doenças Raras/genética , Estados Unidos , Difosfato de UridinaRESUMO
Maintenance of the correct redox status of iron is functionally important for critical biological processes. Multicopper ferroxidases play an important role in oxidizing ferrous iron, released from the cells, into ferric iron, which is subsequently distributed by transferrin. Two well-characterized ferroxidases, ceruloplasmin (CP) and hephaestin (HEPH) facilitate this reaction in different tissues. Recently, a novel ferroxidase, Hephaestin like 1 (HEPHL1), also known as zyklopen, was identified. Here we report a child with compound heterozygous mutations in HEPHL1 (NM_001098672) who presented with abnormal hair (pili torti and trichorrhexis nodosa) and cognitive dysfunction. The maternal missense mutation affected mRNA splicing, leading to skipping of exon 5 and causing an in-frame deletion of 85 amino acids (c.809_1063del; p.Leu271_ala355del). The paternal mutation (c.3176T>C; p.Met1059Thr) changed a highly conserved methionine that is part of a typical type I copper binding site in HEPHL1. We demonstrated that HEPHL1 has ferroxidase activity and that the patient's two mutations exhibited loss of this ferroxidase activity. Consistent with these findings, the patient's fibroblasts accumulated intracellular iron and exhibited reduced activity of the copper-dependent enzyme, lysyl oxidase. These results suggest that the patient's biallelic variants are loss-of-function mutations. Hence, we generated a Hephl1 knockout mouse model that was viable and had curly whiskers, consistent with the hair phenotype in our patient. These results enhance our understanding of the function of HEPHL1 and implicate altered ferroxidase activity in hair growth and hair disorders.
Assuntos
Oxirredutases/genética , Oxirredutases/metabolismo , Adulto , Alelos , Animais , Sítios de Ligação , Ceruloplasmina/metabolismo , Pré-Escolar , Cobre/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Variação Genética/genética , Células HEK293 , Cabelo , Humanos , Ferro/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Oxirredução , FenótipoRESUMO
Ca2+ signaling is vital for various cellular processes including synaptic vesicle exocytosis, muscle contraction, regulation of secretion, gene transcription, and cellular proliferation. The endoplasmic reticulum (ER) is the largest intracellular Ca2+ store, and dysregulation of ER Ca2+ signaling and homeostasis contributes to the pathogenesis of various complex disorders and Mendelian disease traits. We describe four unrelated individuals with a complex multisystem disorder characterized by woolly hair, liver dysfunction, pruritus, dysmorphic features, hypotonia, and global developmental delay. Through whole-exome sequencing and family-based genomics, we identified bi-allelic variants in CCDC47 that encodes the Ca2+-binding ER transmembrane protein CCDC47. CCDC47, also known as calumin, has been shown to bind Ca2+ with low affinity and high capacity. In mice, loss of Ccdc47 leads to embryonic lethality, suggesting that Ccdc47 is essential for early development. Characterization of cells from individuals with predicted likely damaging alleles showed decreased CCDC47 mRNA expression and protein levels. In vitro cellular experiments showed decreased total ER Ca2+ storage, impaired Ca2+ signaling mediated by the IP3R Ca2+ release channel, and reduced ER Ca2+ refilling via store-operated Ca2+ entry. These results, together with the previously described role of CCDC47 in Ca2+ signaling and development, suggest that bi-allelic loss-of-function variants in CCDC47 underlie the pathogenesis of this multisystem disorder.
RESUMO
Neurodevelopmental disorders (NDD) are genetically and phenotypically heterogeneous conditions due to defects in genes involved in development and function of the nervous system. Individuals with NDD, in addition to their primary neurodevelopmental phenotype, may also have accompanying syndromic features that can be very helpful diagnostically especially those with recognizable facial appearance. In this study, we describe ten similarly affected individuals from six unrelated families of different ethnic origins having bi-allelic truncating variants in TMEM94, which encodes for an uncharacterized transmembrane nuclear protein that is highly conserved across mammals. The affected individuals manifested with global developmental delay/intellectual disability, and dysmorphic facial features including triangular face, deep set eyes, broad nasal root and tip and anteverted nostrils, thick arched eye brows, hypertrichosis, pointed chin, and hypertelorism. Birthweight in the upper normal range was observed in most, and all but one had congenital heart defects (CHD). Gene expression analysis in available cells from affected individuals showed reduced expression of TMEM94. Global transcriptome profiling using microarray and RNA sequencing revealed several dysregulated genes essential for cell growth, proliferation and survival that are predicted to have an impact on cardiotoxicity hematological system and neurodevelopment. Loss of Tmem94 in mouse model generated by CRISPR/Cas9 was embryonic lethal and led to craniofacial and cardiac abnormalities and abnormal neuronal migration pattern, suggesting that this gene is important in craniofacial, cardiovascular, and nervous system development. Our study suggests the genetic etiology of a recognizable dysmorphic syndrome with NDD and CHD and highlights the role of TMEM94 in early development.