Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 20(1): 507, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31215403

RESUMO

BACKGROUND: Whiteflies (Bemisia tabaci) are phloem sap-sucking pests that because of their broad host range and ability to transmit viruses damage crop plants worldwide. B. tabaci are now known to be a complex of cryptic species that differ from each other in many characteristics such as mode of interaction with viruses, invasiveness, and resistance to insecticides. Asia II 1 is an indigenous species found on the Indian sub-continent and south-east Asia while the species named as Middle East Asia Minor 1 (MEAM1), likely originated from the Middle-East and has spread worldwide in recent decades. The purpose of this study is to find genomic differences between these two species. RESULTS: Sequencing of the nuclear genome of Asia II 1 with Illumina HiSeq and MiSeq generated 198.90 million reads that covers 88% of the reference genome. The sequence comparison with MEAM1 identified 2,327,972 SNPs and 202,479 INDELs. In Total, 1294 genes were detected with high impact variants. The functional analysis revealed that some of the genes are involved in virus transmission including 4 genes in Tomato yellow leaf curl virus (TYLCV) transmission, 96 in Tomato crinivirus (ToCV) transmission, and 14 genes in insecticide resistance. CONCLUSIONS: These genetic differences between Asia II 1 and MEAM1 may underlie the major biological differences between the two species such as virus transmission, insecticide resistance, and range of host plants. The present study provides new genomic data and information resources for Asia II 1 that will not only contribute to the species delimitation of whitefly, but also help in conceiving future research studies to develop more targeted management strategies against whitefly.


Assuntos
Genes de Insetos/genética , Variação Genética , Hemípteros/fisiologia , Hemípteros/virologia , Vírus de Plantas/fisiologia , Sequenciamento Completo do Genoma , Animais , Núcleo Celular/genética , Ontologia Genética , Genômica , Hemípteros/citologia , Hemípteros/genética , Resistência a Inseticidas/genética , Especificidade da Espécie
2.
PLoS One ; 11(4): e0153883, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27105353

RESUMO

Over the past decade RNA interference (RNAi) technology has emerged as a successful tool not only for functional genomics, but in planta expression of short interfering RNAs (siRNAs) that could offer great potential for insect pest management. The diet of insects feeding exclusively on phloem sieves contains water and sugars as main components, and the uptake of the liquid food greatly depends on the osmotic pressure within the insect body. Based on this physiological mechanism, transgenic plants of Nicotiana tabacum were generated expressing double stranded RNA (dsRNA) against both aquaporin (AQP) and a sucrase gene, alpha glucosidase (AGLU). These two genes are involved in osmotic pressure maintenance particularly in sap sucking insects, and the aim was to disrupt osmoregulation within the insect ultimately leading to mortality. Real time quantitative PCR (RT-qPCR) was performed to assess the suppression of gene expression in Bemisia tabaci (B. tabaci) and mortality was recorded during transgenic tobacco feeding bioassays. Feeding of insects on plants expressing dsRNA significantly reduced the transcript level of the target genes in B. tabaci after six days of feeding and more than 70% mortality was observed in B. tabaci fed on transgenic plants compared to the control plants. Our data shows that down-regulation of genes related to osmoregulation may find practical applications for the control of this important pest in cotton and other crops.


Assuntos
Hemípteros/fisiologia , Controle Biológico de Vetores , Interferência de RNA , Animais , Animais Geneticamente Modificados
3.
Sci Rep ; 6: 38469, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929123

RESUMO

The whitefly Bemisia tabaci (Genn.) is a pest and vector of plant viruses to crop and ornamental plants worldwide. Using RNA interference (RNAi) to down regulate whitefly genes by expressing their homologous double stranded RNAs in plants has great potential for management of whiteflies to reduce plant virus disease spread. Using a Tobacco rattle virus-derived plasmid for in planta transient expression of double stranded RNA (dsRNA) homologous to the acetylcholinesterase (AChE) and ecdysone receptor (EcR) genes of B. tabaci, resulted in significant adult whitefly mortality. Nicotiana tabacum L. plants expressing dsRNA homologous to B. tabaci AChE and EcR were constructed by fusing sequences derived from both genes. Mortality of adult whiteflies exposed to dsRNA by feeding on N. tabacum plants, compared to non-dsRNA expressing plants, recorded at 24-hr intervals post-ingestion for three days, was >90% and 10%, respectively. Analysis of gene expression by real time quantitative PCR indicated that whitefly mortality was attributable to the down-regulation of both target genes by RNAi. Results indicated that knock down of whitefly genes involved in neuronal transmission and transcriptional activation of developmental genes, has potential as a bio-pesticide to reduce whitefly population size and thereby decrease virus spread.


Assuntos
Acetilcolinesterase/genética , Hemípteros/genética , Nicotiana/genética , Receptores de Esteroides/genética , Animais , Expressão Gênica/genética , Hemípteros/virologia , Controle Biológico de Vetores/métodos , Interferência de RNA , RNA de Cadeia Dupla/genética , Receptores de Esteroides/antagonistas & inibidores , Homologia de Sequência , Nicotiana/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa