Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Plant J ; 117(1): 53-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37738381

RESUMO

Seed color is one of the key target traits of domestication and artificial selection in chickpeas due to its implications on consumer preference and market value. The complex seed color trait has been well dissected in several crop species; however, the genetic mechanism underlying seed color variation in chickpea remains poorly understood. Here, we employed an integrated genomics strategy involving QTL mapping, high-density mapping, map-based cloning, association analysis, and molecular haplotyping in an inter-specific RIL mapping population, association panel, wild accessions, and introgression lines (ILs) of Cicer gene pool. This delineated a MATE gene, CaMATE23, encoding a Transparent Testa (TT) and its natural allele (8-bp insertion) and haplotype underlying a major QTL governing seed color on chickpea chromosome 4. Signatures of selective sweep and a strong purifying selection reflected that CaMATE23, especially its 8-bp insertion natural allelic variant, underwent selection during chickpea domestication. Functional investigations revealed that the 8-bp insertion containing the third cis-regulatory RY-motif element in the CaMATE23 promoter is critical for enhanced binding of CaFUSCA3 transcription factor, a key regulator of seed development and flavonoid biosynthesis, thereby affecting CaMATE23 expression and proanthocyanidin (PA) accumulation in the seed coat to impart varied seed color in chickpea. Consequently, overexpression of CaMATE23 in Arabidopsis tt12 mutant partially restored the seed color phenotype to brown pigmentation, ascertaining its functional role in PA accumulation in the seed coat. These findings shed new light on the seed color regulation and evolutionary history, and highlight the transcriptional regulation of CaMATE23 by CaFUSCA3 in modulating seed color in chickpea. The functionally relevant InDel variation, natural allele, and haplotype from CaMATE23 are vital for translational genomic research, including marker-assisted breeding, for developing chickpea cultivars with desirable seed color that appeal to consumers and meet global market demand.


Assuntos
Cicer , Cicer/metabolismo , Locos de Características Quantitativas/genética , Alelos , Domesticação , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Sementes/genética
2.
Plant Physiol ; 191(3): 1884-1912, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36477336

RESUMO

Identifying potential molecular tags for drought tolerance is essential for achieving higher crop productivity under drought stress. We employed an integrated genomics-assisted breeding and functional genomics strategy involving association mapping, fine mapping, map-based cloning, molecular haplotyping and transcript profiling in the introgression lines (ILs)- and near isogenic lines (NILs)-based association panel and mapping population of chickpea (Cicer arietinum). This combinatorial approach delineated a bHLH (basic helix-loop-helix) transcription factor, CabHLH10 (Cicer arietinum bHLH10) underlying a major QTL, along with its derived natural alleles/haplotypes governing yield traits under drought stress in chickpea. CabHLH10 binds to a cis-regulatory G-box promoter element to modulate the expression of RD22 (responsive to desiccation 22), a drought/abscisic acid (ABA)-responsive gene (via a trans-expression QTL), and two strong yield-enhancement photosynthetic efficiency (PE) genes. This, in turn, upregulates other downstream drought-responsive and ABA signaling genes, as well as yield-enhancing PE genes, thus increasing plant adaptation to drought with reduced yield penalty. We showed that a superior allele of CabHLH10 introgressed into the NILs improved root and shoot biomass and PE, thereby enhancing yield and productivity during drought without compromising agronomic performance. Furthermore, overexpression of CabHLH10 in chickpea and Arabidopsis (Arabidopsis thaliana) conferred enhanced drought tolerance by improving root and shoot agro-morphological traits. These findings facilitate translational genomics for crop improvement and the development of genetically tailored, climate-resilient, high-yielding chickpea cultivars.


Assuntos
Cicer , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Alelos , Cicer/genética , Cicer/metabolismo , Ácido Abscísico/metabolismo , Resistência à Seca , Melhoramento Vegetal , Secas , Estresse Fisiológico/genética
3.
Angew Chem Int Ed Engl ; 62(4): e202214041, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36385565

RESUMO

In this study, the precise positioning and alignment of arrays of two different guest molecules in a crystalline host matrix has been engineered and resulted in new optically active materials. Sub-nm differences in the diameters of two types of 1D channels are sufficient for size-selective inclusion of dyes. Energy transport occurs between the arrays of different dyes that are included in parallel-positioned nanochannels by Förster resonance energy transfer (FRET). The color of individual micro-sized crystals are dependent on their relative position under polarized light. This angular-dependent behavior is a result of the geometrically constrained orientation of the dyes by the crystallographic packing of the host matrix and is concentration dependent.

4.
Chemistry ; 28(54): e202201108, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35735237

RESUMO

Formation of highly interpenetrated frameworks is demonstrated. An interesting observation is the presence of very large adamantane-shaped cages in a single network, making these crystals new entries in the collection of diamondoid-type metal-organic frameworks (MOFs). The frameworks were constructed by assembling tetrahedral pyridine ligands and copper dichloride. Currently, the networks' degree of interpenetration is among the highest reported and increases when the size of the ligand is increased. Highly interpenetrated frameworks typically have low surface contact areas. In contrast, in our systems, the voids take up to 63 % of the unit cell volume. The MOFs have chiral features but are formed from achiral components. The chirality is manifested by the coordination chemistry around the metal center, the structure of the helicoidal channels, and the motifs of the individual networks. Channels of both handednesses are present within the unit cells. This phenomenon shapes the walls of the channels, which are composed of 10, 16, or 32 chains correlated with the degree of interpenetration 10-, 16-, and 32-fold, respectively. By changing the distance between the center of the ligand and the coordination moieties, we succeeded in tuning the diameter of the channels. Relatively large channels were formed, having diameters up to 31.0 Å×14.8 Å.

5.
Plant J ; 101(6): 1411-1429, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31702850

RESUMO

Mediator, a multisubunit co-activator complex, regulates transcription in eukaryotes and is involved in diverse processes in Arabidopsis through its different subunits. Here, we have explored developmental aspects of one of the rice Mediator subunit gene OsMED14_1. We analyzed its expression pattern through RNA in situ hybridization and pOsMED14_1:GUS transgenics that showed its expression in roots, leaves, anthers and seeds prominently at younger stages, indicating possible involvement of this subunit in multiple aspects of rice development. To understand the developmental roles of OsMED14_1 in rice, we generated and studied RNAi-based knockdown rice plants that showed multiple effects including less height, narrower leaves and culms with reduced vasculature, lesser lateral root branching, defective microspore development, reduced panicle branching and seed set, and smaller seeds. Histological analyses showed that slender organs were caused by reduction in both cell number and cell size in OsMED14_1 knockdown plants. Flow cytometric analyses and expression analyses of cell cycle-related genes revealed that defective cell-cycle progression led to these defects. Expression analyses of auxin-related genes and indole-3-acetic acid (IAA) immunolocalization study indicated altered auxin level in these knockdown plants. Reduction of lateral root branching in knockdown plants was corrected by exogenous IAA supplement. OsMED14_1 physically interacts with transcription factors YABBY5, TAPETUM DEGENERATION RETARDATION (TDR) and MADS29, possibly regulating auxin homeostasis and ultimately leading to lateral organ/leaf, microspore and seed development.


Assuntos
Oryza/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Proliferação de Células , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Hibridização In Situ , Oryza/genética , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Am Chem Soc ; 143(26): 9842-9848, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34160218

RESUMO

Paramagnetic metal complexes gained a lot of attention due to their participation in a number of important chemical reactions. In most cases, these complexes are dominated by 17-e metalloradicals that are associatively activated with highly reactive paramagnetic 19-e species. Molybdenum paramagnetic complexes are among the most investigated ones. While some examples of persistent 17-e Mo-centered radicals have been reported, in contrast, 19-e Mo-centered radicals are illusive species and as such could rarely be detected. In this work, the photodissociation of the [Cp(CO)3Mo]2 dimer (1) in the presence of phosphines was revisited. As a result, the first persistent, formally 19-e Mo radical with significant electron density on the Mo center (22%), Cp(CO)3Mo•PPh2(o-C2B10H11) (5b), was generated and characterized by EPR spectroscopy and MS as well as studied by DFT calculations. The stabilization of 5b was likely achieved due to a unique electron-withdrawing effect of the o-carboranyl substituent at the phosphorus center.

7.
J Am Chem Soc ; 143(41): 16913-16918, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34617735

RESUMO

We demonstrate the formation of both metallo-organic crystals and nanoscale films that have entirely different compositions and structures despite using the same set of starting materials. This difference is the result of an unexpected cation exchange process. The reaction of an iron polypyridyl complex with a copper salt by diffusion of one solution into another resulted in iron-to-copper exchange, concurrent ligand rearrangement, and the formation of metal-organic frameworks (MOFs). This observation shows that polypyridyl complexes can be used as expendable precursors for the growth of MOFs. In contrast, alternative depositions of the iron polypyridyl complex with a copper salt by automated spin coating on conductive metal oxides resulted in the formation of electrochromic coatings, and the structure and redox properties of the iron complex were retained. The possibility to form such different networks from the same set of molecular building blocks by "in solution" versus "on surface" coordination chemistry broadens the synthetic space to design functional materials.

8.
Plant J ; 98(5): 864-883, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30758092

RESUMO

Plant height (PH) and plant width (PW), two of the major plant architectural traits determining the yield and productivity of a crop, are defined by diverse morphometric characteristics of the shoot apical meristem (SAM). The identification of potential molecular tags from a single gene that simultaneously modulates these plant/SAM architectural traits is therefore prerequisite to achieve enhanced yield and productivity in crop plants, including chickpea. Large-scale multienvironment phenotyping of the association panel and mapping population have ascertained the efficacy of three vital SAM morphometric trait parameters, SAM width, SAM height and SAM area, as key indicators to unravel the genetic basis of the wide PW and PH trait variations observed in desi chickpea. This study integrated a genome-wide association study (GWAS); quantitative trait locus (QTL)/fine-mapping and map-based cloning with molecular haplotyping; transcript profiling; and protein-DNA interaction assays for the dissection of plant architectural traits in chickpea. These exertions delineated natural alleles and superior haplotypes from a CabHLH121 transcription factor (TF) gene within the major QTL governing PW, PH and SAM morphometric traits. A genome-wide protein-DNA interaction assay assured the direct binding of a known stem cell master regulator, CaWUS, to the WOX-homeodomain TF binding sites of a CabHLH121 gene and its constituted haplotypes. The differential expression of CaWUS and transcriptional regulation of its target CabHLH121 gene/haplotypes were apparent, suggesting their collective role in altering SAM morphometric characteristics and plant architectural traits in the contrasting near isogenic lines (NILs). The NILs introgressed with a superior haplotype of a CabHLH121 exhibited optimal PW and desirable PH as well as enhanced yield and productivity without compromising any component of agronomic performance. These molecular signatures of the CabHLH121 TF gene have the potential to regulate both PW and PH traits through the modulation of proliferation, differentiation and maintenance of the meristematic stem cell population in the SAM; therefore, these signatures will be useful in the translational genomic study of chickpea genetic enhancement. The restructured cultivars with desirable PH (semidwarf) and PW will ensure maximal planting density in a specified cultivable field area, thereby enhancing the overall yield and productivity of chickpea. This can essentially facilitate the achievement of better remunerative outputs by farmers with rational land use, therefore ensuring global food security in the present scenario of an increasing population density and shrinking per capita land area.


Assuntos
Biomassa , Cicer/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Meristema/genética , Brotos de Planta/genética , Alelos , Mapeamento Cromossômico , Cicer/anatomia & histologia , Cicer/metabolismo , Genes de Plantas/genética , Genoma de Planta/genética , Genômica/métodos , Genótipo , Haplótipos , Meristema/anatomia & histologia , Meristema/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
9.
Plant Physiol ; 180(1): 253-275, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30737266

RESUMO

The identification of functionally relevant molecular tags is vital for genomics-assisted crop improvement and enhancement of seed yield, quality, and productivity in chickpea (Cicer arietinum). The simultaneous improvement of yield/productivity as well as quality traits often requires pyramiding of multiple genes, which remains a major hurdle given various associated epistatic and pleotropic effects. Unfortunately, no single gene that can improve yield/productivity along with quality and other desirable agromorphological traits is known, hampering the genetic enhancement of chickpea. Using a combinatorial genomics-assisted breeding and functional genomics strategy, this study identified natural alleles and haplotypes of an ABCC3-type transporter gene that regulates seed weight, an important domestication trait, by transcriptional regulation and modulation of the transport of glutathione conjugates in seeds of desi and kabuli chickpea. The superior allele/haplotype of this gene introgressed in desi and kabuli near-isogenic lines enhances the seed weight, yield, productivity, and multiple desirable plant architecture and seed-quality traits without compromising agronomic performance. These salient findings can expedite crop improvement endeavors and the development of nutritionally enriched high-yielding cultivars in chickpea.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Cicer/genética , Glutationa/metabolismo , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Mapeamento Cromossômico , Cicer/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Haplótipos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Sementes/genética
10.
Crit Rev Biochem Mol Biol ; 52(5): 475-502, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28524697

RESUMO

Mediator is a multi-subunit protein complex which is involved in transcriptional regulation in yeast and other eukaryotes. As a co-activator, it connects information from transcriptional activators/repressors to transcriptional machinery including RNA polymerase II and general transcription factors. It is not only involved in transcription initiation but also has important roles to play in transcription elongation and termination. Functional attributes of different Mediator subunits have been largely defined in yeast and mammalian systems earlier, while such studies in plants have gained momentum recently. Mediator regulates various processes related to plant development and is also involved in biotic and abiotic stress response. Thus, plant Mediator, like yeast and mammalian Mediator complex, is indispensable for plant growth and survival. Interaction of its multiple subunits with other regulatory proteins and their ectopic expression or knockdown in model plant like Arabidopsis and certain crop plants are paving the way to biochemical analysis and unravel molecular mechanisms of action of Mediator in plants.


Assuntos
Complexo Mediador/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Complexo Mediador/fisiologia , Desenvolvimento Vegetal , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas/genética , Conformação Proteica , Estresse Fisiológico
12.
Funct Integr Genomics ; 19(6): 973-992, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31177403

RESUMO

Developing functional molecular tags from the cis-regulatory sequence components of genes is vital for their deployment in efficient genetic dissection of complex quantitative traits in crop plants including chickpea. The current study identified 431,194 conserved non-coding SNP (CNSNP) from the cis-regulatory element regions of genes which were annotated on a chickpea genome. These genome-wide CNSNP marker resources are made publicly accessible through a user-friendly web-database ( http://www.cnsnpcicarbase.com ). The CNSNP-based quantitative trait loci (QTL) and expression QTL (eQTL) mapping and genome-wide association study (GWAS) were further integrated with global gene expression landscapes, molecular haplotyping, and DNA-protein interaction study in the association panel and recombinant inbred lines (RIL) mapping population to decode complex genetic architecture of one of the vital seed yield trait under drought stress, drought yield index (DYI), in chickpea. This delineated two constituted natural haplotypes and alleles from a histone H3 protein-coding gene and its transcriptional regulator NAC transcription factor (TF) harboring the major QTLs and trans-acting eQTL governing DYI in chickpea. The effect of CNSNPs in TF-binding cis-element of a histone H3 gene in altering the binding affinity and transcriptional activity of NAC TF based on chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay was evident. The CNSNP-led promising molecular tags scanned will essentially have functional significance to decode transcriptional gene regulatory function and thus can drive translational genomic analysis in chickpea.


Assuntos
Cicer/genética , Produtos Agrícolas/genética , Locos de Características Quantitativas , Sequências Reguladoras de Ácido Nucleico , Estresse Fisiológico , Cicer/crescimento & desenvolvimento , Cicer/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Secas , Histonas/genética , Histonas/metabolismo , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Característica Quantitativa Herdável , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
13.
Plant Cell Environ ; 42(1): 158-173, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29676051

RESUMO

Understanding the genetic basis of photosynthetic efficiency (PE) contributing to enhanced seed yield per plant (SYP) is vital for genomics-assisted crop improvement of chickpea. The current study employed an integrated genomic strategy involving photosynthesis pathway gene-based association mapping, genome-wide association study, quantitative trait loci (QTL) mapping, and expression profiling. This identified 16 potential single nucleotide polymorphism loci linked to major QTLs underlying 16 candidate genes significantly associated with PE and SYP traits in chickpea. The allelic variants were tightly linked to positively interacting QTLs regulating both enhanced PE and SYP traits as exemplified by a chlorophyll A-B binding protein-coding gene. The leaf tissue-specific pronounced up-regulated expression of 16 associated genes in germplasm accessions and homozygous individuals of mapping population was evident. Such combinatorial genomic strategy coupled with gene haplotype-specific association and in silico protein-protein interaction study delineated natural alleles and superior haplotypes from a chlorophyll A-B binding (CAB) protein-coding gene and its interacting gene, Timing of CAB Expression 1 (TOC1), which appear to be most promising candidates in modulating chickpea PE and SYP traits. These functionally pertinent molecular signatures identified have efficacy to drive marker-assisted selection for developing PE-enriched cultivars with high seed yield in chickpea.


Assuntos
Cicer/genética , Fotossíntese/genética , Característica Quantitativa Herdável , Sementes/genética , Mapeamento Cromossômico , Cicer/crescimento & desenvolvimento , Cicer/fisiologia , Produção Agrícola/métodos , Perfilação da Expressão Gênica , Genes de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Sementes/crescimento & desenvolvimento
14.
Theor Appl Genet ; 132(7): 2017-2038, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30929032

RESUMO

KEY MESSAGE: A combinatorial genomic strategy delineated functionally relevant natural allele of a CLAVATA gene and its marker (haplotype)-assisted introgression led to development of the early-flowering chickpea cultivars with high flower number and enhanced yield/productivity. Unraveling the genetic components involved in CLAVATA (CLV) signaling is crucial for modulating important shoot apical meristem (SAM) characteristics and ultimately regulating diverse SAM-regulated agromorphological traits in crop plants. A genome-wide scan identified 142 CLV1-, 28 CLV2- and 6 CLV3-like genes, and their comprehensive genomic constitution and phylogenetic relationships were deciphered in chickpea. The QTL/fine mapping and map-based cloning integrated with high-resolution association analysis identified SNP loci from CaCLV3_01 gene within a major CaqDTF1.1/CaqFN1.1 QTL associated with DTF (days to 50% flowering) and FN (flower number) traits in chickpea, which was further ascertained by quantitative expression profiling. Molecular haplotyping of CaCLV3_01 gene, expressed specifically in SAM, constituted two major haplotypes that differentiated the early-DTF and high-FN chickpea accessions from late-DTF and low-FN. Enhanced accumulation of transcripts of superior CaCLV3_01 gene haplotype and known flowering promoting genes was observed in the corresponding haplotype-introgressed early-DTF and high-FN near-isogenic lines (NILs) with narrow SAM width. The superior haplotype-introgressed NILs exhibited early-flowering, high-FN and enhanced seed yield/productivity without compromising agronomic performance. These delineated molecular signatures can regulate DTF and FN traits through SAM proliferation and differentiation and thereby will be useful for translational genomic study to develop early-flowering cultivars with enhanced yield/productivity.


Assuntos
Cicer/genética , Flores/fisiologia , Transdução de Sinais , Mapeamento Cromossômico , Cicer/fisiologia , Genoma de Planta , Haplótipos , Proteínas de Membrana/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Locos de Características Quantitativas
15.
Plant Sci ; 346: 112146, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38848769

RESUMO

The Mediator complex is essential for eukaryotic transcription, yet its role and the function of its individual subunits in plants, especially in rice, remain poorly understood. Here, we investigate the function of OsMED14_2, a subunit of the Mediator tail module, in rice development. Overexpression and knockout of OsMED14_2 resulted in notable changes in panicle morphology and grain size. Microscopic analysis revealed impact of overexpression on pollen maturation, reflected by reduced viability, irregular shapes, and aberrant intine development. OsMED14_2 was found to interact with proteins involved in pollen development, namely, OsMADS62, OsMADS63 and OsMADS68, and its overexpression negatively affected the expression of OsMADS68 and the expression of other genes involved in intine development, including OsCAP1, OsGCD1, OsRIP1, and OsCPK29. Additionally, we found that OsMED14_2 overexpression influences jasmonic acid (JA) homeostasis, affecting bioactive JA levels, and expression of OsJAZ genes. Our data suggest OsMED14_2 may act as a regulator of JA-responsive genes through its interactions with OsHDAC6 and OsJAZ repressors. These findings contribute to better understanding of the Mediator complex's role in plant traits regulation.

16.
Curr Protein Pept Sci ; 25(4): 307-325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265408

RESUMO

The global pandemic caused by COVID-19 posed a significant challenge to public health, necessitating rapid scientific interventions to tackle the spread of infection. The review discusses the key areas of research on COVID-19 including viral genomics, epidemiology, pathogenesis, diagnostics, and therapeutics. The genome sequencing of the virus facilitated the tracking of its evolution, transmission dynamics, and identification of variants. Epidemiological studies have provided insights into disease spread, risk factors, and the impact of public health infrastructure and social distancing measures. Investigations of the viral pathogenesis have elucidated the mechanisms underlying immune responses and severe manifestations including the long-term effects of COVID-19. Overall, the article provides an updated overview of the diagnostic methods developed for SARS-CoV-2 and discusses their strengths, limitations, and appropriate utilization in different clinical and public health settings. Furthermore, therapeutic approaches including antiviral drugs, immunomodulatory therapies, and repurposed medications have been investigated to alleviate disease severity and improve patient outcomes. Through a comprehensive analysis of these scientific efforts, the review provides an overview of the advancements made in understanding and tackling SARS-CoV-2, while underscoring the need for continued research to address the evolving challenges posed by this global health crisis.


Assuntos
Antivirais , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/virologia , COVID-19/epidemiologia , COVID-19/transmissão , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Antivirais/uso terapêutico , Pandemias/prevenção & controle , Genoma Viral , Saúde Global , Tratamento Farmacológico da COVID-19
17.
Plant Sci ; 321: 111297, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696904

RESUMO

Pollen development and its germination are obligatory for the reproductive success of flowering plants. Calcium-dependent protein kinases (CPKs, also known as CDPKs) regulate diverse signaling pathways controlling plant growth and development. Here, we report the functional characterization of a novel OsCPK29 from rice, which is mainly expressed during pollen maturation stages of the anther. OsCPK29 exclusively localizes in the nucleus, and its N-terminal variable domain is responsible for retaining it in the nucleus. OsCPK29 knockdown rice plants exhibit reduced fertility, set fewer seeds, and produce collapsed non-viable pollen grains that do not germinate. Cytological analysis of anther semi-thin sections during different developmental stages suggested that pollen abnormalities appear after the vacuolated pollen stage. Detailed microscopic study of pollen grains further revealed that they were lacking the functional intine layer although exine layer was present. Consistent with that, downregulation of known intine development-related rice genes was also observed in OsCPK29 silenced anthers. Furthermore, it has been demonstrated that OsCPK29 interacts in vitro as well as in vivo with the MADS68 transcription factor which is a known regulator of pollen development. Therefore, phenotypic observations and molecular studies suggest that OsCPK29 is an important regulator of pollen development in rice.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Germinação , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen
18.
Chem Sci ; 13(20): 5957-5963, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35685804

RESUMO

Geometrical constriction of main group elements leading to a change in the reactivity of these main group centers has recently become an important tool in main group chemistry. A lot of focus on using this modern method is dedicated to group 15 elements and especially to phosphorus. In this work, we present the synthesis, isolation and preliminary reactivity study of the geometrically constrained, square pyramidal (SP) phosphoranide anion (1-). Unlike, trigonal bipyramidal (TBP) phosphoranides that were shown to react as nucleophiles while their redox chemistry was not reported, 1- reacts both as a nucleophile and reductant. The chemical oxidation of 1- leads to a P-P dimer (1-1) that is formed via the dimerization of unstable SP phosphoranyl radical (1˙), an unprecedented decay pathway for phosphoranyl radicals. Reaction of 1- with benzophenone leads via a single electron transfer (SET) to 1-OK and corresponding tetraphenyl epoxide (4).

19.
Microbiol Res ; 265: 127206, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36162150

RESUMO

COVID-19 (Coronavirus Disease 2019), a life-threatening viral infection, is caused by a highly pathogenic virus named SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). Currently, no treatment is available for COVID-19; hence there is an urgent need to find effective therapeutic drugs to combat COVID-19 pandemic. Considering the fact that the world is facing a major issue of antimicrobial drug resistance, naturally occurring compounds have the potential to achieve this goal. Antimicrobial peptides (AMPs) are naturally occurring antimicrobial agents which are effective against a wide variety of microbial infections. Therefore, the use of AMPs is an attractive therapeutic strategy for the treatment of SARS-CoV-2 infection. This review sheds light on the potential of antimicrobial peptides as antiviral agents followed by a comprehensive description of effective antiviral peptides derived from various natural sources found to be effective against SARS-CoV and other respiratory viruses. It also highlights the mechanisms of action of antiviral peptides with special emphasis on their effectiveness against SARS-CoV-2 infection.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Peptídeos Antimicrobianos , Antivirais/farmacologia , Resistência a Múltiplos Medicamentos , Humanos , Pandemias
20.
Curr Protein Pept Sci ; 23(9): 574-584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082852

RESUMO

The major drawbacks of biofuel production at the commercial level are its low yield, nonavailability of feedstock, feedback inhibition, presence of inhibitory pathways in various organisms, and biofuel intolerance of organisms. The present review focuses on the implications of the CRISPRCas9 mediated gene editing tool to alter the genome of bacteria, algae, fungi, and higher plants for efficient biofuel production. Gene knockout and gene cassette insertions employing CRISPR-Cas9 in Saccharomyces cerevisiae and Kluyveromyces marxianus have resulted in enhanced production of bioethanol and 2-Phenyl ethanol in these organisms, respectively. Genomes of several bacterial strains were also modified to enhance ethanol and butanol production in them. CRISPR-Cas9 modification of microalgae has demonstrated improved total lipid content, a prerequisite for biofuel production. All over, CRISPR-Cas9 has emerged as a tool of choice for engineering the genome and metabolic pathways of organisms for producing industrial biofuel. In plant-based biofuel production, the biosynthetic pathways of lignin interfere with the satisfactory release of fermentable sugars thus hampering efficient biofuel production. CRISPR-Cas9 has shown a promising role in reducing lignin content in various plants including barley, switchgrass, and rice straw.


Assuntos
Biocombustíveis , Sistemas CRISPR-Cas , Lignina/metabolismo , Edição de Genes/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa