Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(12): 2184-2199.e16, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35649412

RESUMO

The factors driving therapy resistance in diffuse glioma remain poorly understood. To identify treatment-associated cellular and genetic changes, we analyzed RNA and/or DNA sequencing data from the temporally separated tumor pairs of 304 adult patients with isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant glioma. Tumors recurred in distinct manners that were dependent on IDH mutation status and attributable to changes in histological feature composition, somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A deletions were associated with an increase in proliferating neoplastic cells at recurrence in both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive at recurrence, and their neoplastic cells exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesenchymal transition was associated with the presence of a myeloid cell state defined by specific ligand-receptor interactions with neoplastic cells. Collectively, these recurrence-associated phenotypes represent potential targets to alter disease progression.


Assuntos
Neoplasias Encefálicas , Glioma , Microambiente Tumoral , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Evolução Molecular , Genes p16 , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Recidiva Local de Neoplasia
2.
Cell ; 173(2): 291-304.e6, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625048

RESUMO

We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development.


Assuntos
Neoplasias/patologia , Aneuploidia , Cromossomos/genética , Análise por Conglomerados , Ilhas de CpG , Metilação de DNA , Bases de Dados Factuais , Humanos , MicroRNAs/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , RNA Mensageiro/metabolismo
3.
Cell ; 173(2): 338-354.e15, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625051

RESUMO

Cancer progression involves the gradual loss of a differentiated phenotype and acquisition of progenitor and stem-cell-like features. Here, we provide novel stemness indices for assessing the degree of oncogenic dedifferentiation. We used an innovative one-class logistic regression (OCLR) machine-learning algorithm to extract transcriptomic and epigenetic feature sets derived from non-transformed pluripotent stem cells and their differentiated progeny. Using OCLR, we were able to identify previously undiscovered biological mechanisms associated with the dedifferentiated oncogenic state. Analyses of the tumor microenvironment revealed unanticipated correlation of cancer stemness with immune checkpoint expression and infiltrating immune cells. We found that the dedifferentiated oncogenic phenotype was generally most prominent in metastatic tumors. Application of our stemness indices to single-cell data revealed patterns of intra-tumor molecular heterogeneity. Finally, the indices allowed for the identification of novel targets and possible targeted therapies aimed at tumor differentiation.


Assuntos
Desdiferenciação Celular/genética , Aprendizado de Máquina , Neoplasias/patologia , Carcinogênese , Metilação de DNA , Bases de Dados Genéticas , Epigênese Genética , Humanos , MicroRNAs/metabolismo , Metástase Neoplásica , Neoplasias/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcriptoma , Microambiente Tumoral
4.
Cell ; 164(3): 550-63, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26824661

RESUMO

Therapy development for adult diffuse glioma is hindered by incomplete knowledge of somatic glioma driving alterations and suboptimal disease classification. We defined the complete set of genes associated with 1,122 diffuse grade II-III-IV gliomas from The Cancer Genome Atlas and used molecular profiles to improve disease classification, identify molecular correlations, and provide insights into the progression from low- to high-grade disease. Whole-genome sequencing data analysis determined that ATRX but not TERT promoter mutations are associated with increased telomere length. Recent advances in glioma classification based on IDH mutation and 1p/19q co-deletion status were recapitulated through analysis of DNA methylation profiles, which identified clinically relevant molecular subsets. A subtype of IDH mutant glioma was associated with DNA demethylation and poor outcome; a group of IDH-wild-type diffuse glioma showed molecular similarity to pilocytic astrocytoma and relatively favorable survival. Understanding of cohesive disease groups may aid improved clinical outcomes.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , Transcriptoma , Adulto , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Análise por Conglomerados , DNA Helicases/genética , Metilação de DNA , Epigênese Genética , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Pessoa de Meia-Idade , Mutação , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Transdução de Sinais , Telomerase/genética , Telômero , Proteína Nuclear Ligada ao X
5.
Immunity ; 48(4): 812-830.e14, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29628290

RESUMO

We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-ß dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field.


Assuntos
Genômica/métodos , Neoplasias , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/classificação , Neoplasias/genética , Neoplasias/imunologia , Prognóstico , Equilíbrio Th1-Th2/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Cicatrização/genética , Cicatrização/imunologia , Adulto Jovem
6.
Nature ; 576(7785): 112-120, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31748746

RESUMO

The evolutionary processes that drive universal therapeutic resistance in adult patients with diffuse glioma remain unclear1,2. Here we analysed temporally separated DNA-sequencing data and matched clinical annotation from 222 adult patients with glioma. By analysing mutations and copy numbers across the three major subtypes of diffuse glioma, we found that driver genes detected at the initial stage of disease were retained at recurrence, whereas there was little evidence of recurrence-specific gene alterations. Treatment with alkylating agents resulted in a hypermutator phenotype at different rates across the glioma subtypes, and hypermutation was not associated with differences in overall survival. Acquired aneuploidy was frequently detected in recurrent gliomas and was characterized by IDH mutation but without co-deletion of chromosome arms 1p/19q, and further converged with acquired alterations in the cell cycle and poor outcomes. The clonal architecture of each tumour remained similar over time, but the presence of subclonal selection was associated with decreased survival. Finally, there were no differences in the levels of immunoediting between initial and recurrent gliomas. Collectively, our results suggest that the strongest selective pressures occur during early glioma development and that current therapies shape this evolution in a largely stochastic manner.


Assuntos
Glioma/genética , Adulto , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19 , Progressão da Doença , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Polimorfismo de Nucleotídeo Único , Recidiva
7.
J Cell Biochem ; 125(8): e30612, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923575

RESUMO

Glioblastoma (GBM) is the most common form of malignant primary brain tumor with a high mortality rate. The aim of the present study was to investigate the clinical significance of Family with Sequence Similarity 3, Member C, FAM3C, in GBM using bioinformatic-integrated analysis. First, we performed the transcriptomic integration analysis to assess the expression profile of FAM3C in GBM using several data sets (RNA-sequencing and scRNA-sequencing), which were obtained from TCGA and GEO databases. By using the STRING platform, we investigated FAM3C-coregulated genes to construct the protein-protein interaction network. Next, Metascape, Enrichr, and CIBERSORT databases were used. We found FAM3C high expression in GBM with poor survival rates. Further, we observed, via FAM3C coexpression network analysis, that FAM3C plays key roles in several hallmarks of cancer. Surprisingly, we also highlighted five FAM3C­coregulated genes overexpressed in GBM. Specifically, we demonstrated the association between the high expression of FAM3C and the abundance of the different immune cells, which may markedly worsen GBM prognosis. For the first time, our findings suggest that FAM3C not only can be a new emerging biomarker with promising therapeutic values to GBM patients but also gave a new insight into a potential resource for future GBM studies.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Mapas de Interação de Proteínas , Prognóstico , Transcriptoma , Redes Reguladoras de Genes , Biologia Computacional/métodos , Taxa de Sobrevida , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/biossíntese , Citocinas
8.
BMC Genomics ; 24(1): 717, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017371

RESUMO

Cell annotation is a crucial methodological component to interpreting single cell and spatial omics data. These approaches were developed for single cell analysis but are often biased, manually curated and yet unproven in spatial omics. Here we apply a stemness model for assessing oncogenic states to single cell and spatial omic cancer datasets. This one-class logistic regression machine learning algorithm is used to extract transcriptomic features from non-transformed stem cells to identify dedifferentiated cell states in tumors. We found this method identifies single cell states in metastatic tumor cell populations without the requirement of cell annotation. This machine learning model identified stem-like cell populations not identified in single cell or spatial transcriptomic analysis using existing methods. For the first time, we demonstrate the application of a ML tool across five emerging spatial transcriptomic and proteomic technologies to identify oncogenic stem-like cell types in the tumor microenvironment.


Assuntos
Proteômica , Transcriptoma , Modelos Logísticos , Perfilação da Expressão Gênica , Aprendizado de Máquina
10.
Adv Exp Med Biol ; 1416: 121-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37432624

RESUMO

Historically, the classification of tumors of the central nervous system (CNS) relies on the histologic appearance of cells under a microscope; however, the molecular era of medicine has resulted in new diagnostic paradigms anchored in the intrinsic biology of disease. The 2021 World Health Organization (WHO) reformulated the classification of CNS tumors to incorporate molecular parameters, in addition to histology, to define many tumor types. A contemporary classification system with integrated molecular features aims to provide an unbiased tool to define tumor subtype, the risk of tumor progression, and even the response to certain therapeutic agents. Meningiomas are heterogeneous tumors as depicted by the current 15 distinct variants defined by histology in the 2021 WHO classification, which also incorporated the first moelcular critiera for meningioma grading: homozygous loss of CDKN2A/B and TERT promoter mutation as criteria for a WHO grade 3 meningioma. The proper classification and clinical management of meningioma patients requires a multidisciplinary approach, which in addition to the information on microscopic (histology) and macroscopic (Simpson grade and imaging), should also include molecular alterations. In this chapter, we present the most up-to-date knowledge in CNS tumor classification, particularly in meningioma, in the molecular era and how it could affect their future classification and clinical management of patients with these diseases.


Assuntos
Neoplasias do Sistema Nervoso Central , Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico , Meningioma/genética , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Sistema Nervoso Central , Técnicas Histológicas , Neoplasias Meníngeas/genética
11.
Gastroenterology ; 158(1): 238-252, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585122

RESUMO

BACKGROUND & AIMS: We studied interactions among proteins of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family, which interact with microbes, and transforming growth factor beta (TGFB) signaling pathway, which is often altered in colorectal cancer cells. We investigated mechanisms by which CEACAM proteins inhibit TGFB signaling and alter the intestinal microbiome to promote colorectal carcinogenesis. METHODS: We collected data on DNA sequences, messenger RNA expression levels, and patient survival times from 456 colorectal adenocarcinoma cases, and a separate set of 594 samples of colorectal adenocarcinomas, in The Cancer Genome Atlas. We performed shotgun metagenomic sequencing analyses of feces from wild-type mice and mice with defects in TGFB signaling (Sptbn1+/- and Smad4+/-/Sptbn1+/-) to identify changes in microbiota composition before development of colon tumors. CEACAM protein and its mutants were overexpressed in SW480 and HCT116 colorectal cancer cell lines, which were analyzed by immunoblotting and proliferation and colony formation assays. RESULTS: In colorectal adenocarcinomas, high expression levels of genes encoding CEACAM proteins, especially CEACAM5, were associated with reduced survival times of patients. There was an inverse correlation between expression of CEACAM genes and expression of TGFB pathway genes (TGFBR1, TGFBR2, and SMAD3). In colorectal adenocarcinomas, we also found an inverse correlation between expression of genes in the TGFB signaling pathway and genes that regulate stem cell features of cells. We found mutations encoding L640I and A643T in the B3 domain of human CEACAM5 in colorectal adenocarcinomas; structural studies indicated that these mutations would alter the interaction between CEACAM5 and TGFBR1. Overexpression of these mutants in SW480 and HCT116 colorectal cancer cell lines increased their anchorage-independent growth and inhibited TGFB signaling to a greater extent than overexpression of wild-type CEACAM5, indicating that they are gain-of-function mutations. Compared with feces from wild-type mice, feces from mice with defects in TGFB signaling had increased abundance of bacterial species that have been associated with the development of colon tumors, including Clostridium septicum, and decreased amounts of beneficial bacteria, such as Bacteroides vulgatus and Parabacteroides distasonis. CONCLUSION: We found expression of CEACAMs and genes that regulate stem cell features of cells to be increased in colorectal adenocarcinomas and inversely correlated with expression of TGFB pathway genes. We found colorectal adenocarcinomas to express mutant forms of CEACAM5 that inhibit TGFB signaling and increase proliferation and colony formation. We propose that CEACAM proteins disrupt TGFB signaling, which alters the composition of the intestinal microbiome to promote colorectal carcinogenesis.


Assuntos
Antígeno Carcinoembrionário/genética , Carcinogênese/genética , Neoplasias Colorretais/genética , Microbioma Gastrointestinal/fisiologia , Transdução de Sinais/genética , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Antígeno Carcinoembrionário/metabolismo , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/mortalidade , Modelos Animais de Doenças , Fezes/microbiologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Mutação com Ganho de Função , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Metagenômica , Camundongos , Camundongos Transgênicos , Domínios Proteicos/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Esferoides Celulares , Análise de Sobrevida , Fator de Crescimento Transformador beta/metabolismo
12.
Mod Pathol ; 34(7): 1245-1260, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33692446

RESUMO

WHO 2016 classified glioblastomas into IDH-mutant and IDH-wildtype with the former having a better prognosis but there was no study on IDH-mutant primary glioblastomas only, as previous series included secondary glioblastomas. We recruited a series of 67 IDH-mutant primary glioblastomas/astrocytoma IV without a prior low-grade astrocytoma and examined them using DNA-methylation profiling, targeted sequencing, RNA sequencing and TERT promoter sequencing, and correlated the molecular findings with clinical parameters. The median OS of 39.4 months of 64 cases and PFS of 25.9 months of 57 cases were better than the survival data of IDH-wildtype glioblastomas and IDH-mutant secondary glioblastomas retrieved from datasets. The molecular features often seen in glioblastomas, such as EGFR amplification, combined +7/-10, and TERT promoter mutations were only observed in 6/53 (11.3%), 4/53 (7.5%), and 2/67 (3.0%) cases, respectively, and gene fusions were found only in two cases. The main mechanism for telomere maintenance appeared to be alternative lengthening of telomeres as ATRX mutation was found in 34/53 (64.2%) cases. In t-SNE analyses of DNA-methylation profiles, with an exceptional of one case, a majority of our cases clustered to IDH-mutant high-grade astrocytoma subclass (40/53; 75.5%) and the rest to IDH-mutant astrocytoma subclass (12/53; 22.6%). The latter was also enriched with G-CIMP high cases (12/12; 100%). G-CIMP-high status and MGMT promoter methylation were independent good prognosticators for OS (p = 0.022 and p = 0.002, respectively) and TP53 mutation was an independent poor prognosticator (p = 0.013) when correlated with other clinical parameters. Homozygous deletion of CDKN2A/B was not correlated with OS (p = 0.197) and PFS (p = 0.278). PDGFRA amplification or mutation was found in 16/59 (27.1%) of cases and was correlated with G-CIMP-low status (p = 0.010). Aside from the three well-known pathways of pathogenesis in glioblastomas, chromatin modifying and mismatch repair pathways were common aberrations (88.7% and 20.8%, respectively), the former due to high frequency of ATRX involvement. We conclude that IDH-mutant primary glioblastomas have better prognosis than secondary glioblastomas and have major molecular differences from other commoner glioblastomas. G-CIMP subgroups, MGMT promoter methylation, and TP53 mutation are useful prognostic adjuncts.


Assuntos
Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioblastoma/genética , Adulto , Astrocitoma/mortalidade , Astrocitoma/patologia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Análise Mutacional de DNA , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico
13.
Acta Neuropathol ; 140(6): 919-949, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33009951

RESUMO

Patient-based cancer models are essential tools for studying tumor biology and for the assessment of drug responses in a translational context. We report the establishment a large cohort of unique organoids and patient-derived orthotopic xenografts (PDOX) of various glioma subtypes, including gliomas with mutations in IDH1, and paired longitudinal PDOX from primary and recurrent tumors of the same patient. We show that glioma PDOXs enable long-term propagation of patient tumors and represent clinically relevant patient avatars that retain histopathological, genetic, epigenetic, and transcriptomic features of parental tumors. We find no evidence of mouse-specific clonal evolution in glioma PDOXs. Our cohort captures individual molecular genotypes for precision medicine including mutations in IDH1, ATRX, TP53, MDM2/4, amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and deletion of CDKN2A/B, PTCH, and PTEN. Matched longitudinal PDOX recapitulate the limited genetic evolution of gliomas observed in patients following treatment. At the histological level, we observe increased vascularization in the rat host as compared to mice. PDOX-derived standardized glioma organoids are amenable to high-throughput drug screens that can be validated in mice. We show clinically relevant responses to temozolomide (TMZ) and to targeted treatments, such as EGFR and CDK4/6 inhibitors in (epi)genetically defined subgroups, according to MGMT promoter and EGFR/CDK status, respectively. Dianhydrogalactitol (VAL-083), a promising bifunctional alkylating agent in the current clinical trial, displayed high therapeutic efficacy, and was able to overcome TMZ resistance in glioblastoma. Our work underscores the clinical relevance of glioma organoids and PDOX models for translational research and personalized treatment studies and represents a unique publicly available resource for precision oncology.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Xenoenxertos/imunologia , Organoides/patologia , Temozolomida/uso terapêutico , Animais , Neoplasias Encefálicas/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioma/genética , Xenoenxertos/efeitos dos fármacos , Humanos , Camundongos , Recidiva Local de Neoplasia/genética , Organoides/imunologia , Medicina de Precisão/métodos , Ratos
14.
Nucleic Acids Res ; 44(8): e71, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-26704973

RESUMO

The Cancer Genome Atlas (TCGA) research network has made public a large collection of clinical and molecular phenotypes of more than 10 000 tumor patients across 33 different tumor types. Using this cohort, TCGA has published over 20 marker papers detailing the genomic and epigenomic alterations associated with these tumor types. Although many important discoveries have been made by TCGA's research network, opportunities still exist to implement novel methods, thereby elucidating new biological pathways and diagnostic markers. However, mining the TCGA data presents several bioinformatics challenges, such as data retrieval and integration with clinical data and other molecular data types (e.g. RNA and DNA methylation). We developed an R/Bioconductor package called TCGAbiolinks to address these challenges and offer bioinformatics solutions by using a guided workflow to allow users to query, download and perform integrative analyses of TCGA data. We combined methods from computer science and statistics into the pipeline and incorporated methodologies developed in previous TCGA marker studies and in our own group. Using four different TCGA tumor types (Kidney, Brain, Breast and Colon) as examples, we provide case studies to illustrate examples of reproducibility, integrative analysis and utilization of different Bioconductor packages to advance and accelerate novel discoveries.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Bases de Dados Genéticas , Genoma Humano/genética , Genômica/métodos , Neoplasias/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores Tumorais/genética , Metilação de DNA/genética , Humanos , Neoplasias/classificação , Estatística como Assunto/métodos
16.
Heliyon ; 10(5): e26714, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439848

RESUMO

Simple and complex carcinomas are the most common type of malignant Canine Mammary Tumors (CMTs), with simple carcinomas exhibiting aggressive behavior and poorer prognostic. Stemness is an ability associated with cancer initiation, malignancy, and therapeutic resistance, but is still few elucidated in canine mammary tumor subtypes. Here, we first validated, using CMT samples, a previously published canine one-class logistic regression machine learning algorithm (OCLR) to predict stemness (mRNAsi) in canine cancer cells. Then, using the canine mRNAsi, we observed that simple carcinomas exhibit higher stemness than complex carcinomas and other histological subtypes. Also, we confirmed that stemness is higher and associated with basal-like CMTs and with NMF2 metagene signature, a tumor-specific DNA-repair metagene signature. Using correlation analysis, we selected the top 50 genes correlated with higher stemness, and the top 50 genes correlated with lower stemness and further performed a gene set enrichment analysis to observe the biological processes enriched for these genes. Finally, we suggested two promise stemness-associated targets in CMTs, POLA2 and APEX1, especially in simple carcinomas. Thus, our work elucidates stemness as a potential mechanism behind the aggressiveness and development of canine mammary tumors, especially in simple carcinomas, describing evidence of a promising strategy to target this disease.

17.
Cancer Res ; 84(5): 741-756, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38117484

RESUMO

Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histologic progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neoangiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution toward an IDHwt-like phenotype. SIGNIFICANCE: Standard treatments are related to loss of DNA methylation in IDHmut glioma, resulting in epigenetic activation of genes associated with tumor progression and alterations in the microenvironment that resemble treatment-naïve IDHwt glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Humanos , Neoplasias Encefálicas/patologia , Epigênese Genética , Epigenômica , Glioma/patologia , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação , Recidiva Local de Neoplasia/genética , Microambiente Tumoral
18.
Nat Commun ; 14(1): 5669, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704607

RESUMO

Recurrence of meningiomas is unpredictable by current invasive methods based on surgically removed specimens. Identification of patients likely to recur using noninvasive approaches could inform treatment strategy, whether intervention or monitoring. In this study, we analyze the DNA methylation levels in blood (serum and plasma) and tissue samples from 155 meningioma patients, compared to other central nervous system tumor and non-tumor entities. We discover DNA methylation markers unique to meningiomas and use artificial intelligence to create accurate and universal models for identifying and predicting meningioma recurrence, using either blood or tissue samples. Here we show that liquid biopsy is a potential noninvasive and reliable tool for diagnosing and predicting outcomes in meningioma patients. This approach can improve personalized management strategies for these patients.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Meningioma/diagnóstico , Meningioma/genética , Prognóstico , Inteligência Artificial , Metilação de DNA , Biópsia Líquida , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/genética
19.
Cell Rep Med ; 4(6): 101082, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37343523

RESUMO

Genetic alterations help predict the clinical behavior of diffuse gliomas, but some variability remains uncorrelated. Here, we demonstrate that haploinsufficient deletions of chromatin-bound tumor suppressor NFKB inhibitor alpha (NFKBIA) display distinct patterns of occurrence in relation to other genetic markers and are disproportionately present at recurrence. NFKBIA haploinsufficiency is associated with unfavorable patient outcomes, independent of genetic and clinicopathologic predictors. NFKBIA deletions reshape the DNA and histone methylome antipodal to the IDH mutation and induce a transcriptome landscape partly reminiscent of H3K27M mutant pediatric gliomas. In IDH mutant gliomas, NFKBIA deletions are common in tumors with a clinical course similar to that of IDH wild-type tumors. An externally validated nomogram model for estimating individual patient survival in IDH mutant gliomas confirms that NFKBIA deletions predict comparatively brief survival. Thus, NFKBIA haploinsufficiency aligns with distinct epigenome changes, portends a poor prognosis, and should be incorporated into models predicting the disease fate of diffuse gliomas.


Assuntos
Neoplasias Encefálicas , Glioma , Criança , Humanos , Neoplasias Encefálicas/genética , Epigenoma , Glioma/genética , Glioma/patologia , Haploinsuficiência/genética , Mutação/genética , Inibidor de NF-kappaB alfa/genética , Isocitrato Desidrogenase
20.
Brain Pathol ; 32(6): e13107, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35815721

RESUMO

Telomerase reverse transcriptase (TERT) promoter (pTERT) mutation has often been described as a late event in gliomagenesis and it has been suggested as a prognostic biomarker in gliomas other than 1p19q codeleted tumors. However, the characteristics of isocitrate dehydrogenase (IDH) wild type (wt) (IDHwt), pTERTwt glioblastomas are not well known. We recruited 72 adult IDHwt, pTERTwt glioblastomas and performed methylation profiling, targeted sequencing, and fluorescence in situ hybridization (FISH) for TERT structural rearrangement and ALT (alternative lengthening of telomeres). There was no significant difference in overall survival (OS) between our cohort and a the Cancer Genome Atlas (TCGA) cohort of IDHwt, pTERT mutant (mut) glioblastomas, suggesting that pTERT mutation on its own is not a prognostic factor among IDHwt glioblastomas. Epigenetically, the tumors clustered into classic-like (11%), mesenchymal-like (32%), and LGm6-glioblastoma (GBM) (57%), the latter far exceeding the corresponding proportion seen in the TCGA cohort of IDHwt, pTERTmut glioblastomas. LGm6-GBM-clustered tumors were enriched for platelet derived growth factor receptor alpha (PDGFRA) amplification or mutation (p = 0.008), and contained far fewer epidermal growth factor receptor (EGFR) amplification (p < 0.01), 10p loss (p = 0.001) and 10q loss (p < 0.001) compared with cases not clustered to this group. LGm6-GBM cases predominantly showed ALT (p = 0.038). In the whole cohort, only 35% cases showed EGFR amplification and no case showed combined chromosome +7/-10. Since the cases were already pTERTwt, so the three molecular properties of EGFR amplification, +7/-10, and pTERT mutation may not cover all IDHwt glioblastomas. Instead, EGFR and PDGFRA amplifications covered 67% and together with their mutations covered 71% of cases of this cohort. Homozygous deletion of cyclin dependent kinase inhibitor 2A (CDKN2A)/B was associated with a worse OS (p = 0.031) and was an independent prognosticator in multivariate analysis (p = 0.032). In conclusion, adult IDHwt, pTERTwt glioblastomas show epigenetic clustering different from IDHwt, pTERTmut glioblastomas, and IDHwt glioblastomas which are pTERTwt may however not show EGFR amplification or +7/-10 in a significant proportion of cases. CDKN2A/B deletion is a poor prognostic biomarker in this group.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Telomerase , Humanos , Isocitrato Desidrogenase/genética , Glioblastoma/genética , Glioblastoma/patologia , Homozigoto , Hibridização in Situ Fluorescente , Neoplasias Encefálicas/patologia , Deleção de Sequência , Telomerase/genética , Mutação/genética , Receptores ErbB/genética , Biomarcadores , Prognóstico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa