Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Neurobiol Dis ; 191: 106403, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182074

RESUMO

Loss-of-function mutations in the GNAL gene are responsible for DYT-GNAL dystonia. However, how GNAL mutations contribute to synaptic dysfunction is still unclear. The GNAL gene encodes the Gαolf protein, an isoform of stimulatory Gαs enriched in the striatum, with a key role in the regulation of cAMP signaling. Here, we used a combined biochemical and electrophysiological approach to study GPCR-mediated AC-cAMP cascade in the striatum of the heterozygous GNAL (GNAL+/-) rat model. We first analyzed adenosine type 2 (A2AR), and dopamine type 1 (D1R) receptors, which are directly coupled to Gαolf, and observed that the total levels of A2AR were increased, whereas D1R level was unaltered in GNAL+/- rats. In addition, the striatal isoform of adenylyl cyclase (AC5) was reduced, despite unaltered basal cAMP levels. Notably, the protein expression level of dopamine type 2 receptor (D2R), that inhibits the AC5-cAMP signaling pathway, was also reduced, similar to what observed in different DYT-TOR1A dystonia models. Accordingly, in the GNAL+/- rat striatum we found altered levels of the D2R regulatory proteins, RGS9-2, spinophilin, Gß5 and ß-arrestin2, suggesting a downregulation of D2R signaling cascade. Additionally, by analyzing the responses of striatal cholinergic interneurons to D2R activation, we found that the receptor-mediated inhibitory effect is significantly attenuated in GNAL+/- interneurons. Altogether, our findings demonstrate a profound alteration in the A2AR/D2R-AC-cAMP cascade in the striatum of the rat DYT-GNAL dystonia model, and provide a plausible explanation for our previous findings on the loss of dopamine D2R-dependent corticostriatal long-term depression.


Assuntos
Distonia , Distúrbios Distônicos , Ratos , Animais , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Dopamina/metabolismo , AMP Cíclico/metabolismo , Distonia/genética , Transdução de Sinais/fisiologia , Corpo Estriado/metabolismo , Receptores Dopaminérgicos/metabolismo , Isoformas de Proteínas/metabolismo
2.
Environ Microbiol ; 26(3): e16588, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450576

RESUMO

Dengue represents an increasing public health burden worldwide. In Africa, underreporting and misdiagnosis often mask its true epidemiology, and dengue is likely to be both more widespread than reported data suggest and increasing in incidence and distribution. Wolbachia-based dengue control is underway in Asia and the Americas but has not to date been deployed in Africa. Due to the genetic heterogeneity of African Aedes aegypti populations and the complexity of the host-symbiont interactions, characterization of key parameters of Wolbachia-carrying mosquitoes is paramount for determining the potential of the system as a control tool for dengue in Africa. The wAlbB Wolbachia strain was stably introduced into an African Ae. aegypti population by introgression, and showed high intracellular density in whole bodies and different mosquito tissues; high intracellular density was also maintained following larval rearing at high temperatures. No effect on the adult lifespan induced by Wolbachia presence was detected. Moreover, the ability of this strain to strongly inhibit DENV-2 dissemination and transmission in the host was also demonstrated in the African background. Our findings suggest the potential of harnessing Wolbachia for dengue control for African populations of Ae. aegypti.


Assuntos
Aedes , Dengue , Wolbachia , Animais , Burkina Faso/epidemiologia , Wolbachia/genética , Ásia , Dengue/prevenção & controle
3.
Glob Chang Biol ; 30(3): e17226, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454541

RESUMO

The increase of environmental temperature due to current global warming is not only favouring the expansion of the distribution range of many insect species, but it is also changing their phenology. Insect phenology is tightly linked to developmental timing, which is regulated by environmental temperatures. However, the degree to which the effects of developmental temperatures extend across developmental stages and their inter-stage relationships have not been thoroughly quantified in mosquitoes. Here, we used the mosquito Aedes albopictus, which is an aggressive invasive species and an arboviral vector, to study how developmental temperature influences fitness across developmental stages, thermal traits, energy reserves, transcriptome and Wolbachia prevalence in laboratory-reared populations originally collected from either temperate or tropical regions. We show that hatchability, larval and pupal viability and developmental speed are strongly influenced by temperature, and these effects extend to wing length, body mass, longevity and content of water, protein and lipids in adults in a population-specific manner. On the contrary, neither adult thermal preference nor heat resistance significantly change with temperature. Wolbachia density was generally lower in adult mosquitoes reared at 18°C than at other tested temperatures, and transcriptome analysis showed enrichment for functions linked to stress responses (i.e. cuticle proteins and chitin, cytochrome p450 and heat shock proteins) in mosquitoes reared at both 18 and 32°C. Our data showed an overall reduced vector fitness performance when mosquitoes were reared at 32°C, and the absence of isomorphy in the relationship between developmental stages and temperature in the laboratory population deriving from larvae collected in northern Italy. Altogether, these results have important implications for reliable model projections of the invasion potentials of Ae. albopictus and its epidemiological impact.


Assuntos
Aedes , Mudança Climática , Animais , Temperatura , Aedes/fisiologia , Aquecimento Global , Larva/fisiologia
4.
Int J Food Sci Nutr ; 75(6): 622-636, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39034489

RESUMO

The system-forming element of national security is food security, which guarantees effective management of the food system, ensuring the food needs of the appropriate quantity and quality of each country's citizen. Despite the significant potential of the agricultural sector, which forms the basis of food security, the need to analyse the state of food security in the current situation is due to military operations on the territory of Ukraine, which led to its negative global results. In this regard, the need to develop effective strategies and legal regulation is essential to ensure national and global food security, which in turn requires coordination of efforts of all countries and international organisations through international cooperation. The study aims to establish a pattern regarding the current state of food security by analysing the impact of availability, access, usefulness and stability of food supply on food security. Research methods: comparative analysis; taxonomic analysis; systematisation, generalisation. The survey found that Ukraine's position in the Global Food Security Index (FSI) among 113 countries in 2022 worsened by 13 points, where the worst indicators for domestic food security are sustainability and adaptability (43.5 points out of 100 and 94th place globally) and economic affordability of food (48.1 points out of 100 and 93rd place in the world). It was found that the actual consumption of vegetables, melons, potatoes, and oil in 2021 was slightly higher than the rational norm, indicating sufficient consumption of these products, while the actual consumption of products that are lower than the rational norm includes meat and meat products, milk and dairy products, fish and fish products, and fruits, berries, and grapes. It has been determined that since 2016, the number of kilocalories in the daily diet of the population of Ukraine has not reached the minimum norm of consumption of basic foodstuffs for the working population. It has been established that in 2020 and 2021, the value of the taxonomic indicator for assessing the level of food security (I) has been decreasing, i.e. the distance to the reference vector has been increasing, which indicates a decrease in the level of food security. The forecasting results suggest a downward trend in the food security index for the period 2022-2027, and there is an urgent need to take measures to eliminate this trend and improve the value of the index, which is extremely important for the security of the state, especially in times of war.


Assuntos
Segurança Alimentar , Abastecimento de Alimentos , Ucrânia , Humanos , Dieta , Verduras
5.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473860

RESUMO

Oxytocin (OT) is a neuropeptide that modulates social-related behavior and cognition in the central nervous system of mammals. In the CA1 area of the hippocampus, the indirect effects of the OT on the pyramidal neurons and their role in information processing have been elucidated. However, limited data are available concerning the direct modulation exerted by OT on the CA1 interneurons (INs) expressing the oxytocin receptor (OTR). Here, we demonstrated that TGOT (Thr4,Gly7-oxytocin), a selective OTR agonist, affects not only the membrane potential and the firing frequency but also the neuronal excitability and the shape of the action potentials (APs) of these INs in mice. Furthermore, we constructed linear mixed-effects models (LMMs) to unravel the dependencies between the AP parameters and the firing frequency, also considering how TGOT can interact with them to strengthen or weaken these influences. Our analyses indicate that OT regulates the functionality of the CA1 GABAergic INs through different and independent mechanisms. Specifically, the increase in neuronal firing rate can be attributed to the depolarizing effect on the membrane potential and the related enhancement in cellular excitability by the peptide. In contrast, the significant changes in the AP shape are directly linked to oxytocinergic modulation. Importantly, these alterations in AP shape are not associated with the TGOT-induced increase in neuronal firing rate, being themselves critical for signal processing.


Assuntos
Interneurônios , Ocitocina , Camundongos , Animais , Potenciais de Ação , Ocitocina/farmacologia , Interneurônios/fisiologia , Neurônios , Hipocampo , Células Piramidais , Mamíferos
6.
J Neurosci ; 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35906070

RESUMO

Dopamine (DA) is a critical regulator of striatal network activity and is essential for motor activation and reward-associated behaviors. Previous work has shown that DA is influenced by the reward value of food, as well as by hormonal factors implicated in the regulation of food intake and energy expenditure. Changes in striatal DA signaling also have been linked to aberrant eating patterns. Here we test the effect of leptin, an adipocyte-derived hormone involved in feeding and energy homeostasis regulation, on striatal DA release and uptake. Immunohistochemical evaluation identified leptin receptor expression throughout mouse striatum, including on striatal cholinergic interneurons and their extensive processes. Using fast-scan cyclic voltammetry, we found that leptin causes a concentration-dependent increase in evoked extracellular DA concentration ([DA]o) in dorsal striatum and nucleus accumbens (NAc) core and shell in male mouse striatal slices, and also an increase in the rate of DA uptake. Further, we found that leptin increases cholinergic interneuron excitability, and that the enhancing effect of leptin on evoked [DA]o is lost when nicotinic acetylcholine (ACh) receptors are antagonized or when examined in striatal slices from mice lacking ACh synthesis. Evaluation of signaling pathways underlying leptin's action revealed a requirement for intracellular Ca2+, and the involvement of different downstream pathways in dorsal striatum and NAc core versus NAc shell. These results provide the first evidence for dynamic regulation of DA release and uptake by leptin within brain motor and reward pathways, and highlight the involvement of cholinergic interneurons in this process.SIGNIFICANCE STATEMENTGiven the importance of striatal dopamine in reward, motivation, motor behavior and food intake, identifying the actions of metabolic hormones on dopamine release in striatal subregions should provide new insight into factors that influence dopamine-dependent motivated behaviors. We find that one of these hormones, leptin, boosts striatal dopamine release through a process involving striatal cholinergic interneurons and nicotinic acetylcholine receptors. Moreover, we find that the intracellular cascades downstream from leptin receptor activation underlying enhanced dopamine release differ among striatal subregions. Thus, we not only show that leptin regulates dopamine release, but also identify characteristics of this process that could be harnessed to alter pathological eating behaviors.

7.
J Neurosci ; 42(23): 4725-4736, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35577554

RESUMO

Physical exercise improves motor performance in individuals with Parkinson's disease and elevates mood in those with depression. Although underlying factors have not been identified, clues arise from previous studies showing a link between cognitive benefits of exercise and increases in brain-derived neurotrophic factor (BDNF). Here, we investigated the influence of voluntary wheel-running exercise on BDNF levels in the striatum of young male wild-type (WT) mice, and on the striatal release of a key motor-system transmitter, dopamine (DA). Mice were allowed unlimited access to a freely rotating wheel (runners) or a locked wheel (controls) for 30 d. Electrically evoked DA release was quantified in ex vivo corticostriatal slices from these animals using fast-scan cyclic voltammetry. We found that exercise increased BDNF levels in dorsal striatum (dStr) and increased DA release in dStr and in nucleus accumbens core and shell. Increased DA release was independent of striatal acetylcholine (ACh), and persisted after a week of rest. We tested a role for BDNF in the influence of exercise on DA release using mice that were heterozygous for BDNF deletion (BDNF+/-). In contrast to WT mice, evoked DA release did not differ between BDNF+/- runners and controls. Complementary pharmacological studies using a tropomyosin receptor kinase B (TrkB) agonist in WT mouse slices showed that TrkB receptor activation also increased evoked DA release throughout striatum in an ACh-independent manner. Together, these data support a causal role for BDNF in exercise-enhanced striatal DA release and provide mechanistic insight into the beneficial effects of exercise in neuropsychiatric disorders, including Parkinson's, depression, and anxiety.SIGNIFICANCE STATEMENT Exercise has been shown to improve movement and cognition in humans and rodents. Here, we report that voluntary exercise for 30 d leads to an increase in evoked DA release throughout the striatum and an increase in BDNF in the dorsal (motor) striatum. The increase in DA release appears to require BDNF, indicated by the absence of DA release enhancement with running in BDNF+/- mice. Activation of BDNF receptors using a pharmacological agonist was also shown to boost DA release. Together, these data support a necessary and sufficient role for BDNF in exercise-enhanced DA release and provide mechanistic insight into the reported benefits of exercise in individuals with dopamine-linked neuropsychiatric disorders, including Parkinson's disease and depression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dopamina , Doença de Parkinson , Acetilcolina/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Corpo Estriado , Dopamina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens
8.
Mol Ecol ; 32(22): 6018-6026, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804145

RESUMO

Drosophila suzukii (Matsumura, 1931), the spotted-wing drosophila, is a highly invasive fruit fly that spread from Southern Asia across most regions of Asia and, in the last 15 years, has invaded Europe and the Americas. It is an economically important pest of small fruits such as berries and stone fruits. Drosophila suzukii speciated by adapting to cooler, mountainous, and forest environments. In temperate regions, it evolved seasonal polyphenism traits which enhanced its survival during stressful winter population bottlenecks. Consequently, in these temperate regions, the populations undergo seasonal reproductive dynamics. Despite its economic importance, no data are available on the behavioural reproductive strategies of this fly. The presence of polyandry, for example, has not been determined despite the important role it might play in the reproductive dynamics of populations. We explored the presence of polyandry in an established population in Trentino, a region in northern Italy. In this area, D. suzukii overcomes the winter bottleneck and undergoes a seasonal reproductive fluctuation. We observed a high remating frequency in females during the late spring demographic explosion that led to the abundant summer population. The presence of a high degree of polyandry and shared paternity associated with the post-winter population increase raises the question of the possible evolutionary adaptive role of this reproductive behaviour in D. suzukii.


Assuntos
Drosophila , Espécies Introduzidas , Feminino , Animais , Drosophila/genética , Reprodução , Ásia , Europa (Continente)
9.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982693

RESUMO

Dopamine (DA) is a key neurotransmitter in the basal ganglia, implicated in the control of movement and motivation. Alteration of DA levels is central in Parkinson's disease (PD), a common neurodegenerative disorder characterized by motor and non-motor manifestations and deposition of alpha-synuclein (α-syn) aggregates. Previous studies have hypothesized a link between PD and viral infections. Indeed, different cases of parkinsonism have been reported following COVID-19. However, whether SARS-CoV-2 may trigger a neurodegenerative process is still a matter of debate. Interestingly, evidence of brain inflammation has been described in postmortem samples of patients infected by SARS-CoV-2, which suggests immune-mediated mechanisms triggering the neurological sequelae. In this review, we discuss the role of proinflammatory molecules such as cytokines, chemokines, and oxygen reactive species in modulating DA homeostasis. Moreover, we review the existing literature on the possible mechanistic interplay between SARS-CoV-2-mediated neuroinflammation and nigrostriatal DAergic impairment, and the cross-talk with aberrant α-syn metabolism.


Assuntos
COVID-19 , Doença de Parkinson , Humanos , Dopamina/metabolismo , Doenças Neuroinflamatórias , SARS-CoV-2/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
10.
Eur J Nucl Med Mol Imaging ; 49(9): 3119-3128, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35194673

RESUMO

PURPOSE: To evaluate the diagnostic accuracy of a deep learning (DL) algorithm predicting hemodynamically significant coronary artery disease (CAD) by using a rest dataset of myocardial computed tomography perfusion (CTP) as compared to invasive evaluation. METHODS: One hundred and twelve consecutive symptomatic patients scheduled for clinically indicated invasive coronary angiography (ICA) underwent CCTA plus static stress CTP and ICA with invasive fractional flow reserve (FFR) for stenoses ranging between 30 and 80%. Subsequently, a DL algorithm for the prediction of significant CAD by using the rest dataset (CTP-DLrest) and stress dataset (CTP-DLstress) was developed. The diagnostic accuracy for identification of significant CAD using CCTA, CCTA + CTP stress, CCTA + CTP-DLrest, and CCTA + CTP-DLstress was measured and compared. The time of analysis for CTP stress, CTP-DLrest, and CTP-DLStress was recorded. RESULTS: Patient-specific sensitivity, specificity, NPV, PPV, accuracy, and area under the curve (AUC) of CCTA alone and CCTA + CTPStress were 100%, 33%, 100%, 54%, 63%, 67% and 86%, 89%, 89%, 86%, 88%, 87%, respectively. Patient-specific sensitivity, specificity, NPV, PPV, accuracy, and AUC of CCTA + DLrest and CCTA + DLstress were 100%, 72%, 100%, 74%, 84%, 96% and 93%, 83%, 94%, 81%, 88%, 98%, respectively. All CCTA + CTP stress, CCTA + CTP-DLRest, and CCTA + CTP-DLStress significantly improved detection of hemodynamically significant CAD compared to CCTA alone (p < 0.01). Time of CTP-DL was significantly lower as compared to human analysis (39.2 ± 3.2 vs. 379.6 ± 68.0 s, p < 0.001). CONCLUSION: Evaluation of myocardial ischemia using a DL approach on rest CTP datasets is feasible and accurate. This approach may be a useful gatekeeper prior to CTP stress..


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Aprendizado Profundo , Reserva Fracionada de Fluxo Miocárdico , Imagem de Perfusão do Miocárdio , Humanos , Angiografia por Tomografia Computadorizada , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , Perfusão , Valor Preditivo dos Testes
11.
Mol Psychiatry ; 26(11): 6427-6450, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33879865

RESUMO

Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target. Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes. Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure.


Assuntos
Neurônios Dopaminérgicos , Fator de Iniciação 2 em Eucariotos , Animais , Cognição , Neurônios Dopaminérgicos/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/genética , Camundongos , Fosforilação , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
12.
Nutr Metab Cardiovasc Dis ; 32(3): 586-595, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35109998

RESUMO

BACKGROUND AND AIMS: The aim of the present study is to evaluate whether advanced coronary atherosclerosis analysis by CCTA may improve prognostic stratification among diabetic patients at high cardiovascular risk (CV risk). METHODS AND RESULTS: The study population consisted of 265 consecutive diabetic patients at high CV risk who underwent CCTA for suspected CAD between January 2011 and December 2016. For every patients both traditional and advanced, qualitative and quantitative coronary plaque analysis were performed. The occurrence of cardiac death, ACS, and non-urgent revascularization were recorded at follow-up. Among the 265 patients enrolled, 21 were lost to follow-up, whereas 244 (92%) had a complete follow-up (mean 45 ± 22 months) and were classified at high (n = 67) or very high cardiovascular risk (n = 177), according to ESC Guidelines. A total of 63 events were recorded (3 Cardiac Death, 3 NSTEMI, 8 unstable angina, 36 late non-urgent revascularization and 13 non-cardiac death) in 57 different patients. Elevated fibro-fatty plaque volume was the only predictor of events over age, gender and traditional risk factor when ACS and MACE were considered as end-points [HR (95% CI) 6.01 (1.65-21.87), p = 0.006 and 3.46 (2.00-5.97); p < 0.001]. CONCLUSION: The present study confirms the prognostic role of advance coronary atherosclerosis evaluation beyond risk factors and stenosis severity, even in diabetics. Despite the very high cardiovascular risk of study population, a not negligible portion (23%) of patients exhibited totally normal coronaries.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Placa Aterosclerótica , Angiografia por Tomografia Computadorizada , Angiografia Coronária/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Diabetes Mellitus/diagnóstico , Seguimentos , Humanos , Placa Aterosclerótica/diagnóstico por imagem , Placa Aterosclerótica/terapia , Valor Preditivo dos Testes , Prognóstico , Medição de Risco , Fatores de Risco
13.
J Clin Pharm Ther ; 47(1): 33-37, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34263472

RESUMO

WHAT IS KNOWN AND OBJECTIVE: There is limited information on acceptability of solid dosage forms by young patients with neuromuscular disorders such as Duchenne muscular dystrophy (DMD). Capsule size selection and ability to swallow the NF-κB inhibitor edasalonexent were assessed in males 4-7 years of age with DMD enrolled in clinical trials for a new therapeutic. METHODS: The Phase 3 PolarisDMD randomized, double-blind, placebo-controlled trial enrolled 131 patients from 8 countries. The Phase 2 MoveDMD trial enrolled 31 patients in the United States. As part of enrolment criteria, these trials assessed the ability to swallow softgel 100 mg (~10 mm) or 250 mg (~15 mm) capsules formulated with a phosphatidylcholine-containing coating. Supportive strategies included pill-swallowing techniques and aids. RESULTS: Most (97%; 175/181) patients screened were able to swallow capsules. In Phase 2 and 3, respectively, 77% (24/31) and 61% (80/131) of enrolled patients selected the larger capsule and among those selecting the smaller capsule, most transitioned to the larger capsule. There were no obvious geographical differences in ability to swallow capsules and size selection was not correlated with age. Compliance was high (92%-98%) through 52 weeks of dosing with no discontinuations due to capsule burden. WHAT IS NEW AND CONCLUSION: Swallowing of capsules was not a barrier for drug administration in young patients with DMD. Capsule formulations may be an acceptable alternative to liquid formulations for children as young as 4 years of age.


Assuntos
Ácidos Araquidônicos/uso terapêutico , Deglutição/fisiologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Salicilamidas/uso terapêutico , Ácidos Araquidônicos/administração & dosagem , Cápsulas , Criança , Pré-Escolar , Método Duplo-Cego , Humanos , Masculino , Preferência do Paciente , Salicilamidas/administração & dosagem
14.
Eur J Neurosci ; 49(6): 794-804, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29791756

RESUMO

Diet influences dopamine transmission in motor- and reward-related basal ganglia circuitry. In part, this reflects diet-dependent regulation of circulating and brain insulin levels. Activation of striatal insulin receptors amplifies axonal dopamine release in brain slices, and regulates food preference in vivo. The effect of insulin on dopamine release is indirect, and requires striatal cholinergic interneurons that express insulin receptors. However, insulin also acts directly on dopamine axons to increase dopamine uptake by promoting dopamine transporter (DAT) surface expression, counteracting enhanced dopamine release. Here, we determined the functional consequences of acute insulin exposure and chronic diet-induced changes in insulin on DAT activity after evoked dopamine release in striatal slices from adult ad-libitum fed (AL) rats and mice, and food-restricted (FR) or high-fat/high-sugar obesogenic (OB) diet rats. Uptake kinetics were assessed by fitting evoked dopamine transients to the Michaelis-Menten equation and extracting Cpeak and Vmax . Insulin (30 nm) increased both parameters in the caudate putamen and nucleus accumbens core of AL rats in an insulin receptor- and PI3-kinase-dependent manner. A pure effect of insulin on uptake was unmasked using mice lacking striatal acetylcholine, in which increased Vmax caused a decrease in Cpeak . Diet also influenced Vmax , which was lower in FR vs. AL. The effects of insulin on Cpeak and Vmax were amplified by FR but blunted by OB, consistent with opposite consequences of these diets on insulin levels and insulin receptor sensitivity. Overall, these data reveal acute and chronic effects of insulin and diet on dopamine release and uptake that will influence brain reward pathways.


Assuntos
Encéfalo/metabolismo , Dieta Hiperlipídica , Dopamina/metabolismo , Insulina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/farmacologia , Insulina/farmacologia , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Masculino , Núcleo Accumbens/efeitos dos fármacos , Ratos Sprague-Dawley , Receptor de Insulina/efeitos dos fármacos , Receptor de Insulina/metabolismo
15.
BMC Cancer ; 19(1): 593, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208434

RESUMO

BACKGROUND: Cancer patients with advanced disease routinely exhaust available clinical regimens and lack actionable genomic medicine results, leaving a large patient population without effective treatments options when their disease inevitably progresses. To address the unmet clinical need for evidence-based therapy assignment when standard clinical approaches have failed, we have developed a probabilistic computational modeling approach which integrates molecular sequencing data with functional assay data to develop patient-specific combination cancer treatments. METHODS: Tissue taken from a murine model of alveolar rhabdomyosarcoma was used to perform single agent drug screening and DNA/RNA sequencing experiments; results integrated via our computational modeling approach identified a synergistic personalized two-drug combination. Cells derived from the primary murine tumor were allografted into mouse models and used to validate the personalized two-drug combination. Computational modeling of single agent drug screening and RNA sequencing of multiple heterogenous sites from a single patient's epithelioid sarcoma identified a personalized two-drug combination effective across all tumor regions. The heterogeneity-consensus combination was validated in a xenograft model derived from the patient's primary tumor. Cell cultures derived from human and canine undifferentiated pleomorphic sarcoma were assayed by drug screen; computational modeling identified a resistance-abrogating two-drug combination common to both cell cultures. This combination was validated in vitro via a cell regrowth assay. RESULTS: Our computational modeling approach addresses three major challenges in personalized cancer therapy: synergistic drug combination predictions (validated in vitro and in vivo in a genetically engineered murine cancer model), identification of unifying therapeutic targets to overcome intra-tumor heterogeneity (validated in vivo in a human cancer xenograft), and mitigation of cancer cell resistance and rewiring mechanisms (validated in vitro in a human and canine cancer model). CONCLUSIONS: These proof-of-concept studies support the use of an integrative functional approach to personalized combination therapy prediction for the population of high-risk cancer patients lacking viable clinical options and without actionable DNA sequencing-based therapy.


Assuntos
Biologia Computacional/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Quimioterapia Combinada/métodos , Modelos Estatísticos , Medicina de Precisão/métodos , Rabdomiossarcoma Alveolar/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Cães , Sinergismo Farmacológico , Feminino , Xenoenxertos , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos NOD
16.
Mov Disord ; 34(6): 821-831, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31002748

RESUMO

BACKGROUND: Prolonged dopaminergic replacement therapy in PD results in pulsatile dopamine receptors stimulation in both dorsal and ventral striatum causing wearing off, motor fluctuations, and nonmotor side effects such as behavioral addictions. Among impulse control disorders, binge eating can be easily modeled in laboratory animals. OBJECTIVES: We hypothesize that manipulation of dopamine levels in a 6-hydroxydopamine-lesioned rats, as a model of PD characterized by a different extent of dopamine denervation between dorsal and ventral striatum, would influence both synaptic plasticity of the nucleus accumbens and binge-like eating behavior. METHODS: Food preference, food intake, and weight gain were monitored in sham-operated and unilaterally lesioned rats, subjected to a modified version of Corwin's limited access protocol, modelling binge eating disorder. Electrophysiological properties and long-term potentiation of GABAergic spiny projection neurons of the nucleus accumbens core were studied through ex vivo intracellular and patch-clamp recordings from corticostriatal slices of naïve and l-dopa-treated rats. RESULTS: Sham-operated animals with intact nucleus accumbens core plasticity reliably developed food-addiction-like behavior when exposed to intermittent access to a highly palatable food. In contrast, parkinsonian rats were unresponsive to such restriction regimens, and also plasticity was lost in ventral spiny neurons. Chronic l-dopa reestablished long-term potentiation and compulsive eating, but with a different temporal dynamic that follows that of drug administration. CONCLUSIONS: Our data indicate that endogenous and exogenous dopamine drive binge-like consumption of a palatable food in healthy and parkinsonian rats with distinct temporal dynamics, providing new insights into the complexity of l-dopa effects on the mesolimbic dopaminergic system. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Dopaminérgicos/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Levodopa/farmacologia , Transtornos Parkinsonianos/fisiopatologia , Animais , Preferências Alimentares/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiopatologia , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Ratos , Ratos Wistar , Aumento de Peso/efeitos dos fármacos
17.
BMC Neurol ; 19(1): 84, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31046703

RESUMO

BACKGROUND: Treatment options for Duchenne muscular dystrophy remain limited, although consensus treatment guidelines recommend corticosteroid use. METHODS: This retrospective analysis assessed corticosteroid use in ambulatory and nonambulatory US males with Duchenne, age 35 and under, or Becker muscular dystrophy, who enrolled in The Duchenne Registry from 2007 to 2016 (formerly DuchenneConnect). RESULTS: The mean (SD) age of corticosteroid use initiation was 5.9 (2.5) years, and deflazacort use (54%) was slightly more common than prednisone/prednisolone (46%). Among all responses from those with Duchenne, 63% were currently on corticosteroids, 12% were no longer on corticosteroids, and 25% had never been on corticosteroids. Among those who were nonambulatory, 49% were currently on corticosteroids, 28% had discontinued corticosteroids, and 23% had never used corticosteroids. Primary reasons for never initiating therapy were that corticosteroids were not prescribed or recommended and concerns about side effects. Corticosteroid use was maximal at age 8 (84% on corticosteroids) and gradually declined from age 10 to 19. The primary reasons for corticosteroid discontinuation were problems with side effects (65%) or not enough benefit (28%). Average doses of corticosteroids were below recommended doses. In the 159 responses with Becker muscular dystrophy, 20% were currently using corticosteroids. CONCLUSIONS: Recognizing the self-selected nature of participation, it appears that a considerable proportion of US participants registered with The Duchenne Registry were either not on corticosteroids or not on recommended doses despite consensus recommendations. Side effects were a consideration in initiating and discontinuing treatment. These data reinforce the need for additional treatment options for those affected by Duchenne.


Assuntos
Corticosteroides/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Criança , Humanos , Masculino , Sistema de Registros , Estudos Retrospectivos , Estados Unidos
19.
Brain ; 141(2): 505-520, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29281030

RESUMO

Nigro-striatal dopamine transmission is central to a wide range of neuronal functions, including skill learning, which is disrupted in several pathologies such as Parkinson's disease. The synaptic plasticity mechanisms, by which initial motor learning is stored for long time periods in striatal neurons, to then be gradually optimized upon subsequent training, remain unexplored. Addressing this issue is crucial to identify the synaptic and molecular mechanisms involved in striatal-dependent learning impairment in Parkinson's disease. In this study, we took advantage of interindividual differences between outbred rodents in reaching plateau performance in the rotarod incremental motor learning protocol, to study striatal synaptic plasticity ex vivo. We then assessed how this process is modulated by dopamine receptors and the dopamine active transporter, and whether it is impaired by overexpression of human α-synuclein in the mesencephalon; the latter is a progressive animal model of Parkinson's disease. We found that the initial acquisition of motor learning induced a dopamine active transporter and D1 receptors mediated long-term potentiation, under a protocol of long-term depression in striatal medium spiny neurons. This effect disappeared in animals reaching performance plateau. Overexpression of human α-synuclein reduced striatal dopamine active transporter levels, impaired motor learning, and prevented the learning-induced long-term potentiation, before the appearance of dopamine neuronal loss. Our findings provide evidence of a reorganization of cellular plasticity within the dorsolateral striatum that is mediated by dopamine receptors and dopamine active transporter during the acquisition of a skill. This newly identified mechanism of cellular memory is a form of metaplasticity that is disrupted in the early stage of synucleinopathies, such as Parkinson's disease, and that might be relevant for other striatal pathologies, such as drug abuse.


Assuntos
Corpo Estriado/citologia , Aprendizagem/fisiologia , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Benzazepinas/farmacologia , Antagonistas de Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Aprendizagem/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Destreza Motora/efeitos dos fármacos , Piperazinas/farmacologia , Tempo de Reação/fisiologia , Sinapsinas/genética , Sinapsinas/metabolismo , Sinaptofisina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia
20.
J Cell Sci ; 129(6): 1128-40, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26823603

RESUMO

The most common mutation of the cystic fibrosis transmembrane regulator (CFTR) gene, F508del, produces a misfolded protein resulting in its defective trafficking to the cell surface and an impaired chloride secretion. Pharmacological treatments partially rescue F508del CFTR activity either directly by interacting with the mutant protein and/or indirectly by altering the cellular protein homeostasis. Here, we show that the phosphorylation of ezrin together with its binding to phosphatidylinositol-4,5-bisphosphate (PIP2) tethers the F508del CFTR to the actin cytoskeleton, stabilizing it on the apical membrane and rescuing the sub-membrane compartmentalization of cAMP and activated PKA. Both the small molecules trimethylangelicin (TMA) and VX-809, which act as 'correctors' for F508del CFTR by rescuing F508del-CFTR-dependent chloride secretion, also restore the apical expression of phosphorylated ezrin and actin organization and increase cAMP and activated PKA submembrane compartmentalization in both primary and secondary cystic fibrosis airway cells. Latrunculin B treatment or expression of the inactive ezrin mutant T567A reverse the TMA and VX-809-induced effects highlighting the role of corrector-dependent ezrin activation and actin re-organization in creating the conditions to generate a sub-cortical cAMP pool of adequate amplitude to activate the F508del-CFTR-dependent chloride secretion.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Animais , Cloretos/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Fibrose Cística/enzimologia , Fibrose Cística/genética , Proteínas do Citoesqueleto/genética , Citoesqueleto/genética , Humanos , Fosforilação , Ratos , Deleção de Sequência , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa