Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Am Chem Soc ; 146(6): 3963-3973, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305745

RESUMO

One of the challenges for the realization of molecular electronics is the design of nanoscale molecular wires displaying long-range charge transport. Graphene nanoribbons are an attractive platform for the development of molecular wires with long-range conductance owing to their unique electrical properties. Despite their potential, the charge transport properties of single nanoribbons remain underexplored. Herein, we report a synthetic approach to prepare N-doped pyrene-pyrazinoquinoxaline molecular graphene nanoribbons terminated with diamino anchoring groups at each end. These terminal groups allow for the formation of stable molecular graphene nanoribbon junctions between two metal electrodes that were investigated by scanning tunneling microscope-based break-junction measurements. The experimental and computational results provide evidence of long-range tunneling charge transport in these systems characterized by a shallow conductance length dependence and electron tunneling through >6 nm molecular backbone.

2.
J Comput Chem ; 44(4): 516-533, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36507763

RESUMO

We present a toolkit that allows for the preparation of QM/MM input files from a conformational ensemble of molecular geometries. The package is currently compatible with trajectory and topology files in Amber, CHARMM, GROMACS and NAMD formats, and has the possibility to generate QM/MM input files for Gaussian (09 and 16), Orca (≥4.0), NWChem and (Open)Molcas. The toolkit can be used in command line, so that no programming experience is required, although it presents some features that can also be employed as a python application programming interface. We apply the toolkit in four situations in which different electronic-structure properties of organic molecules in the presence of a solvent or a complex biological environment are computed: the reduction potential of the nucleobases in acetonitrile, an energy decomposition analysis of tyrosine interacting with water, the absorption spectrum of an azobenzene derivative integrated into a voltage-gated ion channel, and the absorption and emission spectra of the luciferine/luciferase complex. These examples show that the toolkit can be employed in a manifold of situations for both the electronic ground state and electronically excited states. It also allows for the automatic correction of the active space in the case of CASSCF calculations on an ensemble of geometries, as it is shown for the azobenzene derivative photoswitch case.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Software , Compostos Azo
3.
Inorg Chem ; 62(40): 16523-16537, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37755334

RESUMO

Multiply charged complexes bound by noncovalent interactions have been previously described in the literature, although they were mostly focused on organic and main group inorganic systems. In this work, we show that similar complexes can also be found for organometallic systems containing transition metals and deepen in the reasons behind the existence of these species. We have studied the structures, binding energies, and dissociation profiles in the gas phase of a series of charged hydrogen-bonded dimers of metallocene (Ru, Co, Rh, and Mn) derivatives isoelectronic with the ferrocene dimer. Our results indicate that the carboxylic acid-containing dimers are more strongly bonded and present larger barriers to dissociation than the amide ones and that the cationic complexes tend to be more stable than the anionic ones. Additionally, we describe for the first time the symmetric proton transfer that can occur while in the metastable phase. Finally, we use a density-based energy decomposition analysis to shine light on the nature of the interaction between the dimers.

4.
J Chem Inf Model ; 63(3): 882-897, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36661314

RESUMO

Herein, an Energy Decomposition Analysis (EDA) scheme extended to the framework of QM/MM calculations in the context of electrostatic embeddings (QM/MM-EDA) including atomic charges and dipoles is applied to assess the effect of the QM region size on the convergence of the different interaction energy components, namely, electrostatic, Pauli, and polarization, for cationic, anionic, and neutral systems interacting with a strong polar environment (water). Significant improvements are found when the bulk solvent environment is described by a MM potential in the EDA scheme as compared to pure QM calculations that neglect bulk solvation. The predominant electrostatic interaction requires sizable QM regions. The results reported here show that it is necessary to include a surprisingly large number of water molecules in the QM region to obtain converged values for this energy term, contrary to most cluster models often employed in the literature. Both the improvement of the QM wave function by means of a larger basis set and the introduction of polarization into the MM region through a polarizable force field do not translate to a faster convergence with the QM region size, but they lead to better results for the different interaction energy components. The results obtained in this work provide insight into the effect of each energy component on the convergence of the solute-solvent interaction energy with the QM region size. This information can be used to improve the MM FFs and embedding schemes employed in QM/MM calculations of solvated systems.


Assuntos
Teoria Quântica , Água , Solventes , Soluções , Eletricidade Estática
5.
J Chem Inf Model ; 61(9): 4455-4461, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34396775

RESUMO

Herein, it is shown how anion recognition in highly polar solvents by neutral metal-free receptors is feasible when multiple hydrogen bonding and anion-π interactions are suitably combined. A neutral aromatic molecular tweezer functionalized with azo groups is shown to merge these two kinds of interactions in a unique system and its efficiency as an anion catcher in water is evaluated using first-principles quantum methods. Theoretical calculations unequivocally prove the high thermodynamic stability in water of a model anion, bromide, captured within the tweezer's cavity. Thus, static calculations indicate anion-tweezer interaction energies within the range of covalent or ionic bonds and stability constants in water of more than 10 orders of magnitude. First-principles molecular dynamics calculations also corroborate the stability through the time of the anion-tweezer complex in water. It shows that the anion is always found within the tweezer's cavity due to the combination of the tweezer-anion interactions plus a hydrogen bond between the anion and a water molecule that is inside the tweezer's cavity.


Assuntos
Água , Ânions , Ligação de Hidrogênio , Solventes , Termodinâmica
6.
Phys Chem Chem Phys ; 23(36): 20533-20540, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34505588

RESUMO

We extend for the first time a quantum mechanical energy decomposition analysis scheme based on deformation electron densities to a hybrid electrostatic embedding quantum mechanics/molecular mechanics framework. The implemented approach is applied to characterize the interactions between cisplatin and a dioleyl-phosphatidylcholine membrane, which play a key role in the permeation mechanism of the drug inside the cells. The interaction energy decomposition into electrostatic, induction, dispersion and Pauli repulsion contributions is performed for ensembles of geometries to account for conformational sampling. It is evidenced that the electrostatic and repulsive components are predominant in both polar and non-polar regions of the bilayer.


Assuntos
Antineoplásicos/química , Cisplatino/química , Fosfatidilcolinas/química , Teoria Quântica , Modelos Moleculares , Estrutura Molecular
7.
Phys Chem Chem Phys ; 23(8): 4777-4783, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33599227

RESUMO

Some of the most promising materials for application in molecular electronics and spintronics are based on diradical chains. Herein, the proposed relation between increasing conductance with length and diradical character is revisited using ab initio methods that account for the static electron correlation effects. Electron transmission was previously obtained from restricted single determinant wavefuntions or tight-binding approximations, which are unable to account for static correlation. Broken Symmetry Unrestricted Kohn-Sham Density Functional Theory (BS-UKS-DFT) in combination with electron transport analysis based on electron deformation orbitals (EDOs) reflects an exponential decay of the electrical conductance with length. Also, other important effects such as quantum interference are correctly accounted for, leading to a decrease of the conductance as the diradical character increases. As a proof-of-concept, the electrical conductance obtained from BS-UKS-DFT and CASSCF(2,2) wavefunctions were compared in diradical graphene strips in the frame of the pseudo-π approach, obtaining very similar results.

8.
J Phys Chem A ; 125(37): 8337-8344, 2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34510896

RESUMO

Herein, the power of multicenter electron delocalization analysis to elucidate the intricacies of concerted reaction mechanisms is brought to light by tracking the transition of [1,3] sigmatropic rearrangements from the high-barrier pericyclic mechanism in 1-butene to the barrierless pseudopericyclic mechanism in 1,2-diamino-1-nitrosooxyethane. This transition has been progressively achieved by substituting the migrating group, changing the donor and acceptor atoms, and functionalizing the alkene unit with weak and strong electron-donating and electron-withdrawing groups. Fourteen [1,3] sigmatropic reactions with electronic energy barriers ranging from 1 to 89 kcal/mol have been investigated. A very good correlation has been found between the barrier and the four-center electron delocalization at the transition state, the latter calculated for the atoms involved in the four-centered ring adduct formed along the reaction path. Surprisingly, the barrier has been found to be independent of the bond strength between the migrating group and the donor atom so that only the changes induced in the multicenter bonding control the kinetics of the reaction. Additional insights into the effect of atom substitution and group functionalization have also been extracted from the analysis of the multicenter electron delocalization profiles along the reaction path and qualitatively supported by the topological analysis of the electron density.

9.
Chemistry ; 26(68): 16138-16143, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32893901

RESUMO

The Clar Goblet, the first radical bowtie nanographene proposed by Erich Clar nearly 50 years ago, was recently synthesized. Bowtie nanographenes present quasi-degenerate magnetic ground states, which make them so elusive as unique. A thorough analysis is presented of the spin-state energetics of Clar Goblet and bowtie nanographenes by a battery of existing and novel ab initio procedures ranging from density functional theory to complete active space Hamiltonians. With this, it was proven that π radicals of bowtie nanographenes sit on BP (Benzo[cd]Pyrene) moieties driven by their local aromaticity, a purely chemical concept, which confers global stability to the whole structure. Besides, a novel Pauli energy densities analysis provided a visual intuitive explanation for this preference. These findings allow envisioning that analogous bowtie nanographenes with arbitrary polyradical character are not only feasible at the molecular scale but will share Clar Goblet's peculiar properties.

10.
Nano Lett ; 19(10): 7394-7399, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31525054

RESUMO

An extraordinary new family of molecular junctions, inaccurately referred to as "anti-Ohmic" wires in the recent literature, has been proposed based on theoretical predictions. The unusual electron transport observed for these systems, characterized by a reversed exponential decay of their electrical conductance, might revolutionize the design of molecular electronic devices. This behavior, which has been associated with intrinsic diradical nature, is reexamined in this work. Since the diradical character arises from a near-degeneracy of the frontier orbitals, the employment of a multireference approach is mandatory. CASSCF calculations on a set of nanowires based on polycyclic aromatic hydrocarbons (PAHs) demonstrate that, in the frame of an appropriate multireference treatment, the ground state of these systems shows the expected exponential decay of the conductance. Interestingly, these calculations do evidence a reversed exponential decay of the conductance, although now in several excited states. Similar results have been obtained for other recently proposed candidates to "anti-Ohmic" wires. These findings open new horizons for possible applications in molecular electronics of these promising systems.

11.
Phys Chem Chem Phys ; 21(11): 6274-6286, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30834903

RESUMO

The sum-over-states (SOS) method allows the computation of polarizabilities and hyperpolarizabilities additively from the contributions of different electronic excited states in a given molecule or cluster. Subsequent analysis of the main excited configurations contributing to the relevant excited states allows characterizing the orbitals involved in the linear and nonlinear optical response. Unfortunately, the chemically relevant information that can be obtained by SOS is hindered by a series of methodological and computational drawbacks. Among these drawbacks, we can highlight the high computational cost, problems arising from nonconvergent series and errors caused by the inaccurate description of excitation energies and/or higher excited state matrix elements. For this reason, coupled-perturbed schemes are currently widely used to determine the NLO potential of molecules and materials. However, such a choice limits the amount of intuitive chemical information that, on the other hand, can be retrieved by a successful SOS computation. In this work, we present and discuss a novel computational strategy that offers the means to extract the useful chemical insights from a coupled-perturbed calculation at almost negligible extra computational cost providing a transparent picture about orbital contributions to the properties of interest. The proposed method is based on the generation and further analysis of field-induced orbitals, FIOs, from the analytic or numerical derivatives of the dipole moment. Orbital symmetry rules are derived using group theory and the method is tested for a series of small and medium size systems.

12.
Phys Chem Chem Phys ; 18(22): 15312-21, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27210053

RESUMO

Due to the great interest that biochemical sensors constructed from graphene nanostructures have raised recently, in this work we analyse in detail the electronic factors responsible for the large affinity of biomolecular units for graphene surfaces using ab initio quantum chemical tools based on density functional theory. Both finite and periodic graphene structures have been employed in our study. Whereas the former allows the analysis of the different energy components contributing to the interaction energy separately, the periodic structure provides a more realistic calculation of the total adsorption energy in an extended graphene surface and serves to validate the results obtained using the finite model. In addition, qualitative relations between interaction energy and electron polarization upon adsorption have been established using the finite model. In this work, we have analysed thermodynamically stable adsorption complexes formed by glycine, melamine, pyronin cation, porphine, tetrabenzoporphine and phthalocyanine with a 2D structure of ninety six carbons and periodic structures formed by cells of fifty and seventy two carbons. Differences in the electrostatic, Pauli repulsion, induction and dispersion energies among aromatic and non-aromatic molecules, charged and non-charged molecules and H-π and stacking interactions have been thoroughly analysed in this work.


Assuntos
Grafite/química , Nanoestruturas/química , Adsorção , Elétrons , Glicina/química , Indóis/química , Isoindóis , Modelos Moleculares , Porfirinas/química , Teoria Quântica , Eletricidade Estática , Propriedades de Superfície , Termodinâmica , Triazinas/química
13.
Phys Chem Chem Phys ; 17(26): 16826-34, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26058486

RESUMO

The unusual aromatic stability of cyclic bicalicene has been suggested to come from a tetraionic structure, where positive and negative charges are located on the cyclopropene and cyclopentadiene rings, respectively. Energetic, magnetic, geometric and electron delocalization analysis performed on a series of bicalicene derivatives, incorporating different electron donating and withdrawing groups, and electrically perturbed bicalicene structures provide additional proof of the role played by this tetraionic structure in the aromatic stability of bicalicene. In this work the aromatic stabilization is chemically and electrically tuned, enhancing or disrupting the electron delocalization and aromatic stability of the cyclopropene and cyclopentadiene rings by increasing or decreasing their corresponding charges. It is shown how the electron delocalization within these rings is similar to that of cyclopropene cation and cyclopentadiene anion for a perfect polarization of one electron.

14.
Phys Chem Chem Phys ; 17(1): 575-87, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25407229

RESUMO

The suitability of implicitly dispersion-corrected functionals, namely the M06-2X, for the determination of interaction energies and electron polarization densities in adsorption studies of aromatic molecules on carbon allotropes surfaces is analysed by comparing the results with those obtained using explicit dispersion through Grimme's empirical corrections. Several models of increasing size for the graphene sheet together with one-dimensional curved carbon structures, (5,5), (6,6) and (7,7) armchair single-walled nanotubes, and two-dimensional curved carbon structures, C60 fullerene, have been considered as substrates in this work, whereas pyridine has been chosen as an example for the adsorbed aromatic molecule. Comparison with recent experimental estimations of the adsorption energy and calculations using periodic boundary conditions on a supercell of 72 carbon atoms indicates that a finite model containing ninety six carbon atoms (C96) approaches quite well the adsorption on a graphene sheet. Analysis of the interaction energy components reveals that the M06-2X functional accounts for most of the dispersion energy implicitly, followed far by wB97X and B3LYP, whereas B97 and BLYP do not differ too much from HF. It has been found that M06-2X corrects only the energy component associated to dispersion and leaves the rest, electrostatic, Pauli and induction "unaltered" with respect to the other DFT functionals investigated. Moreover, only the M06-2X functional reflects the effect of dispersion on the electron polarization density, whereas for the remaining functionals the polarization density does not differ too much from the HF density. This makes the former functional more suitable a priori for the calculation of electron density related properties in these adsorption complexes.

15.
J Comput Chem ; 35(17): 1261-9, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24676839

RESUMO

The concept of "electron deformation orbitals" (EDOs) is used to investigate the electric response of conducting metals and oligophenyl chains. These orbitals and their eigenvalues are obtained by diagonalization of the deformation density matrix (difference between the density matrices of the perturbed and unperturbed systems) and can be constructed as linear combinations of the unperturbed molecular orbitals within "frozen geometry" conditions. This form of the EDOs allows calculating the part of the electron deformation density associated to an effective electron transfer from occupied to virtual orbitals (valence to conduction band electron transfer in the band model of conductivity). It is found that the "electron deformation" orbitals pair off, displaying the same eigenvalue but opposite sign. Each pair represents an amount of accumulation/depletion of electron charge at different molecular regions. In the oligophenyl systems investigated only one pair contributes effectively to the charge flow between molecular ends, resulting from the promotion of electrons from occupied orbitals to close in energy virtual orbitals of appropriate symmetry and overlapping. Analysis of this pair along explains the differences in conductance of olygophenyl chains based on phenyl units.

16.
Chemphyschem ; 15(18): 4067-76, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25263101

RESUMO

In this study, we analyzed the Raman spectrum of a water molecule adsorbed on a cluster of 20 silver atoms, and the plasmonic electromagnetic effect of the silver surface was also considered to give a theoretical prediction of the surface-enhanced Raman scattering spectrum. The calculations were performed at the density functional theory (DFT) level by using both frozen and unfrozen silver clusters. Two different models were used to consider the plasmonic enhancement; one of them was a modified classical (dipole) model and the other was the coupled perturbed Hartree-Fock method with excitation frequencies obtained from time-dependent DFT calculations and with proper detuning of these frequencies. The importance of small geometrical distortions of the silver surface in the orientation of the adsorbed water was shown. Moreover, it was shown how the symmetry of the transition dipole moment and the symmetry of the vibrational modes influence the Raman intensities of the SERS spectrum.

17.
J Phys Chem A ; 118(21): 3827-3834, 2014 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-24689867

RESUMO

Ortiz and Seminario (J. Chem. Phys. 2007, 127, 111106/1-3) proposed some years ago a simple and direct approach to obtain I/V profiles from the combination of ab initio equilibrium electronic structure calculations and the uncertainty principle as an alternative or complementary tool to more sophisticated nonequilibrium Green's functions methods. In this work, we revisit the fundamentals of this approach and reformulate accordingly the expression of the electric current. By analogy to the spontaneous electron decay process in electron transitions, in our revision, the current is calculated upon the relaxing process from the "polarized" state induced by the external electric field to the electronic ground state. The electric current is obtained from the total charge transferred through the molecule and the corresponding electronic energy relaxation. The electric current expression proposed is more general compared with the previous expression employed by Ortiz and Seminario, where the charge variation must be tested among different slabs of atoms at the contact. This new approach has been tested on benzene-1,4-dithiolate attached to different gold clusters that represent the contact with the electrodes. Analysis of the total electron deformation density induced by the external electric voltage and properties associated with the electron deformation orbitals supports the conclusions obtained from the I/V profiles.

18.
Chemistry ; 19(11): 3646-54, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23345192

RESUMO

Recently, experimental and theoretical determination of electric currents induced by finite bias voltages in p-xylylene chains attached to gold contacts revealed higher conductance of these systems in comparison with p-phenylene homologous chains. To gain more insight into the conducting properties of these oligophenyl structures, ab initio studies were carried out on the electronic properties of two different p-xylylene-like chains (pX1 and pX2) and the p-phenylene (pP) chain attached to gold contacts, with molecular formulas AuCH2 (C6 H4 )n CH2 Au (n=1-5), Au2 C(C6 H4 )n CAu2 (n=1-5), and Au(C6 H4 )n Au (n=1-5), respectively. The molecules were subjected to finite bias voltages ranging from 0 to 5 V. Analysis of the intramolecular electron transfer and electron delocalization revealed a completely opposite response to electric perturbation of pX2 in comparison with pX1 and pP. Thus, in pX2 the applied voltage causes an increase in the electron delocalization within the rings together with a large electron transfer and energetic stabilization. On the contrary, the same voltages partially destroy the electron delocalization in pX1 and pP, produce a large local electron polarization in the benzene rings, and a smaller energetic stabilization. These differences can be rationalized in terms of the role played by polarized valence bond structures in the total wave function. Theoretical estimation of the I/V profiles indicates that pX2 chains are much better electronic conductors than pX1 and pP.


Assuntos
Cicloparafinas/química , Compostos Organoáuricos/química , Xilenos/química , Condutividade Elétrica , Elétrons , Estrutura Molecular
19.
J Phys Chem A ; 117(22): 4679-87, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23675945

RESUMO

The aromatic stabilization of closed-shell charged polybenzenoid hydrocarbons (PBHs) has been scrutinized by means of energetic and magnetic aromaticity criteria and by direct measures of electron delocalization. Thus, topological resonance energies and their circuit contributions, ring current maps, and multicenter delocalization indices have been calculated for a series of 18 polybenzenoid cations containing from 3 to 10 benzene rings. All calculations indicate that the closed-shell cations have a similar degree of aromaticity compared to that of the corresponding closed-shell neutral PBHs. All cations investigated display a large degree of electronic delocalization in the ring, accompanied by significant aromatic stabilization and a strong diatropic peripheral electron current. Graph theoretical models describe perfectly the aromatic features of these hydrocarbon fragments, showing how they can be understood as a superposition of specific neutral PBHs. The large aromatic character of these systems suggests they may be relatively stable upon formation at combustion conditions, like those given in the interstellar medium. It has been postulated that closed-shell fragments of PBHs may play an important role in the photoluminescent phenomenon known as extended red emission.

20.
J Sci Food Agric ; 93(2): 293-303, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22740371

RESUMO

BACKGROUND: Previous studies showed that phosphate can be complexed by humic acids (HA) through stable metal (M) bridges (PMHA). We studied the thermodynamic properties of PMHA and their relationships with the ability of PMHA to both decrease soil P fixation and increase P availability for plants. With this aim, we studied the theoretical stability of PFeHA, PAlHA and PCaHA by molecular modelling methods in relation to the degree and intensity of P absorption in soils and the ability of plants to take up complexed P. RESULTS: A density functional theory (DFT) quantum chemical study enabled us to obtain stable structures for the three PMHA complexes in water solution. The theoretical stabilities (ΔG°) were consistent with that for apparent stability obtained by Scatchard method, PFeHA ≥ PAlHA > PCaHA, though the differences were clearer by the DFT method. Also the reduction of soil P fixation and the release of P from PMHA in the presence of an anionic resin confirmed the stability order of the different PMHA. Plant studies confirmed the ability of diverse plant species to take up both P and metal complexed in PMHA. CONCLUSION: The results indicated the potential efficiency of PMHA-based fertilizers to optimize P fertilization for crops cultivated in soils with high P fixation ability.


Assuntos
Alumínio/metabolismo , Cálcio/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes , Ferro/metabolismo , Modelos Moleculares , Fósforo/metabolismo , Alumínio/química , Cálcio/química , Quelantes/química , Quelantes/metabolismo , Cicer/crescimento & desenvolvimento , Cicer/metabolismo , Produtos Agrícolas/metabolismo , Fertilizantes/análise , Substâncias Húmicas/análise , Ferro/química , Cinética , Fosfatos/química , Fosfatos/metabolismo , Teoria Quântica , Solo/química , Espanha , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa