Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Malar J ; 14: 240, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26062808

RESUMO

BACKGROUND: The Health Office of Aceh aims to eliminate malaria from Aceh Province, Indonesia by 2015. Malaria was formerly common in Aceh (population 4.5 million), but has declined dramatically in recent years consequent to post-tsunami control efforts. Successful elimination will depend upon rapid and accurate diagnosis and case follow-up at community level. A prerequisite to this is widespread coverage of high quality malaria diagnosis. This study describes the results of a comprehensive assessment of the malaria diagnostic capacity in Aceh as the province moves towards malaria elimination. METHODS: The study was conducted in 23 districts in Aceh from October 2010 to July 2011. Six types of questionnaires were used to collect data on competency of microscopists and laboratory capacity. Standardized slides were used to evaluate the proficiency of all microscopists. In addition, site visits to 17 primary health centres (PHC) assessed diagnostic practice and logistics capacity. RESULTS: Five hundred and seventy four malaria microscopists have been officially registered and assigned to duty in the 23 districts in Aceh Province. They work in 345 laboratories, predominantly in PHCs (69 %) and hospitals (25 %). Three laboratories were evaluated as adequate for all 30 elements, while 29 laboratories were adequate for less than five of 30 elements. Standardized proficiency tests showed that 413 microscopists were at basic (in training) level, with 10 advanced and 9 reference level. No microscopist achieved expert level. Neither the province nor any of Aceh's districts has a standardized inventory and logistics database for malaria diagnostics, nor did any of the surveyed laboratories operate a quality assurance programme for either microscopy or rapid diagnostic tests. CONCLUSIONS: The study highlights the importance of careful assessment of diagnostic capacity when embarking upon a large-scale malaria elimination programme. Aceh's laboratories have minimal infrastructure with nearly all microscopists still in training. On the positive side, a large workforce of microscopists has been assigned to laboratories with the needed equipment. Aceh will need to embark on a large-scale comprehensive quality assurance scheme if it is to achieve malaria elimination.


Assuntos
Pessoal de Laboratório , Malária/diagnóstico , Microscopia/normas , Adulto , Idoso , Feminino , Humanos , Indonésia , Pessoal de Laboratório/estatística & dados numéricos , Malária/prevenção & controle , Masculino , Microscopia/estatística & dados numéricos , Pessoa de Meia-Idade , Inquéritos e Questionários , Adulto Jovem
2.
PLoS Negl Trop Dis ; 12(11): e0006924, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30500828

RESUMO

The discovery of the life-threatening zoonotic infection Plasmodium knowlesi has added to the challenges of prompt and accurate malaria diagnosis and surveillance. In this study from Aceh Province, Indonesia, a malaria elimination setting where P. knowlesi endemicity was not previously known, we report the laboratory investigation and difficulties encountered when using molecular detection methods for quality assurance of microscopically identified clinical cases. From 2014 to 2015, 20 (49%) P. falciparum, 16 (39%) P. vivax, 3 (7%) P. malariae, and 2 (5%) indeterminate species were identified by microscopy from four sentinel health facilities. At a provincial-level reference laboratory, loop-mediated isothermal amplification (LAMP), a field-friendly molecular method, was performed and confirmed Plasmodium in all samples though further species-identification was limited by the unavailability of non-falciparum species-specific testing with the platform used. At a national reference laboratory, several molecular methods including nested PCR (nPCR) targeting the 18 small sub-unit (18S) ribosomal RNA, nPCR targeting the cytochrome-b (cytb) gene, a P. knowlesi-specific nPCR, and finally sequencing, were necessary to ultimately classify the samples as: 19 (46%) P. knowlesi, 8 (20%) P. falciparum, 14 (34%) P. vivax. Microscopy was unable to identify or mis-classified up to 56% of confirmed cases, including all cases of P. knowlesi. With the nPCR methods targeting the four human-only species, P. knowlesi was missed (18S rRNA method) or showed cross-reactivity for P. vivax (cytb method). To facilitate diagnosis and management of potentially fatal P. knowlesi infection and surveillance for elimination of human-only malaria in Indonesia and other affected settings, new detection methods are needed for testing at the point-of-care and in local reference laboratories.


Assuntos
Malária/parasitologia , Plasmodium knowlesi/isolamento & purificação , Plasmodium/isolamento & purificação , Erradicação de Doenças , Humanos , Indonésia/epidemiologia , Laboratórios , Malária/epidemiologia , Malária/prevenção & controle , Técnicas de Amplificação de Ácido Nucleico , Plasmodium/classificação , Plasmodium/genética , Plasmodium knowlesi/classificação , Plasmodium knowlesi/genética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa