Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Genet Genomics ; 295(3): 717-739, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32124034

RESUMO

The phenylpropanoid pathway is an important route of secondary metabolism involved in the synthesis of different phenolic compounds such as phenylpropenes, anthocyanins, stilbenoids, flavonoids, and monolignols. The flux toward monolignol biosynthesis through the phenylpropanoid pathway is controlled by specific genes from at least ten families. Lignin polymer is one of the major components of the plant cell wall and is mainly responsible for recalcitrance to saccharification in ethanol production from lignocellulosic biomass. Here, we identified and characterized sugarcane candidate genes from the general phenylpropanoid and monolignol-specific metabolism through a search of the sugarcane EST databases, phylogenetic analysis, a search for conserved amino acid residues important for enzymatic function, and analysis of expression patterns during culm development in two lignin-contrasting genotypes. Of these genes, 15 were cloned and, when available, their loci were identified using the recently released sugarcane genomes from Saccharum hybrid R570 and Saccharum spontaneum cultivars. Our analysis points out that ShPAL1, ShPAL2, ShC4H4, Sh4CL1, ShHCT1, ShC3H1, ShC3H2, ShCCoAOMT1, ShCOMT1, ShF5H1, ShCCR1, ShCAD2, and ShCAD7 are strong candidates to be bona fide lignin biosynthesis genes. Together, the results provide information about the candidate genes involved in monolignol biosynthesis in sugarcane and may provide useful information for further molecular genetic studies in sugarcane.


Assuntos
Vias Biossintéticas/genética , Lignina/biossíntese , Proteínas de Plantas/genética , Propanóis/metabolismo , Saccharum/genética , Saccharum/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Lignina/genética , Propanóis/química , Saccharum/classificação , Saccharum/crescimento & desenvolvimento
2.
Proc Natl Acad Sci U S A ; 109(51): 21146-51, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213252

RESUMO

Leaves and flowers begin life as outgrowths from the edges of shoot apical meristems. Stem cell divisions in the meristem center replenish cells that are incorporated into organ primordia at the meristem periphery and leave the meristem. Organ boundaries, regions of limited growth that separate forming organs from the meristem, serve to isolate these two domains and are critical for coordination of organogenesis and meristem maintenance. Boundary formation and maintenance are poorly understood processes, despite the identification of a number of boundary-specific transcription factors. Here we provide genetic and biochemical evidence that the Arabidopsis thaliana transcription factor lateral organ boundaries (LOB) negatively regulates accumulation of the plant steroid hormone brassinosteroid (BR) in organ boundaries. We found that ectopic expression of LOB results in reduced BR responses. We identified BAS1, which encodes a BR-inactivating enzyme, as a direct target of LOB transcriptional activation. Loss-of-function lob mutants exhibit organ fusions, and this phenotype is suppressed by expression of BAS1 under the LOB promoter, indicating that BR hyperaccumulation contributes to the lob mutant phenotype. In addition, LOB expression is BR regulated; therefore, LOB and BR form a feedback loop to modulate local BR accumulation in organ boundaries to limit growth in the boundary domain.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Brassinosteroides/metabolismo , Alelos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Modelos Genéticos , Mutação , Fenótipo , Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Tempo , Transcrição Gênica
3.
J Exp Bot ; 62(1): 221-33, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20797997

RESUMO

The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) gene family encodes plant-specific transcription factors. In this report, the LBD gene DOWN IN DARK AND AUXIN1 (DDA1), which is closely related to LATERAL ORGAN BOUNDARIES (LOB) and ASYMMETRIC LEAVES2 (AS2), was characterized. DDA1 is expressed primarily in vascular tissues and its transcript levels were reduced by exposure to exogenous indole-3-acetic acid (IAA or auxin) and in response to dark exposure. Analysis of a T-DNA insertion line, dda1-1, in which the insertion resulted in misregulation of DDA1 transcripts in the presence of IAA and in the dark revealed possible functions in auxin response and photomorphogenesis. dda1-1 plants exhibited reduced sensitivity to auxin, produced fewer lateral roots, and displayed aberrant hypocotyl elongation in the dark. Phenotypes resulting from fusion of a transcriptional repression domain to DDA1 suggest that DDA1 may act as both a transcriptional activator and a transcriptional repressor depending on the context. These results indicate that DDA1 may function in both the auxin signalling and photomorphogenesis pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Estrutura Terciária de Proteína , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/química , Fatores de Transcrição/genética
4.
Plant Cell Rep ; 29(5): 461-71, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20195610

RESUMO

The AtGRP5 gene from Arabidopsis thaliana encodes a glycine-rich protein which has a major activity in protoderm-derived cells and is expressed in cells that undergo the first anatomical modifications leading to somatic embryo development. It has been previously demonstrated that its minimum promoter is 316 bp long including the 5'UTR and presents three putative TATA-boxes sequences and several regions that are homologous to previous characterized cis-acting elements. In order to better characterize the AtGRP5 expression and to identify the promoter regions involved in its preferential epidermal expression, in situ hybridization and 5' promoter deletions were employed. In situ hybridization and GUS expression assays indicate that, besides being present during somatic embryogenesis, AtGRP5 is also expressed during the zygotic embryo development. The sequential 5' deletions indicate that multiple negative and positive regulatory elements are present in the AtGRP5 promoter and operate in order to confer its distinct expression pattern. A 44-bp region was shown to be essential for the epidermal expression of this gene in leaves, stems, flowers and fruits, and is also responsible for high activity of the AtGRP5 promoter in zygotic embryos. An element responsible for the phloem expression was also identified in a 35-bp region.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , TATA Box , Nicotiana/genética , Nicotiana/metabolismo
5.
Planta ; 230(2): 253-65, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19434422

RESUMO

Although several glycine-rich protein (GRP) genes were isolated and characterized, very little is known about their function. The primary structure of AtGRP5 from Arabidopsis thaliana has a signal peptide followed by a region with high glycine content. In this work, green fluorescent protein fusions were obtained in order to characterize the sub-cellular localization of the AtGRP5 protein. The results indicated that this protein is the first described vacuolar GRP. Sense, antisense and RNAi transgenic A. thaliana plants were generated and analyzed phenotypically. Plants overexpressing AtGRP5 showed longer roots and an enhanced elongation of the inflorescence axis, while antisense and RNAi plants demonstrated the opposite phenotype. The analysis of a knockout T-DNA line corroborates the phenotypes obtained with the antisense and RNAi plants. Altogether, these results suggest that this vacuolar GRP could be involved in organ growth by promoting cell elongation processes.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Forma Celular/fisiologia , Glicina/química , Plantas Geneticamente Modificadas/metabolismo , Vacúolos/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Forma Celular/genética , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Microscopia Confocal , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Plant Signal Behav ; 12(2): e1191733, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28125320

RESUMO

AtGRP3 is a glycine-rich protein from Arabidopsis thaliana shown to interact with the extracellular domain of the receptor-like kinase (RLK) AtWAK1. Based on previous functional data for AtWAK1, a model was proposed that AtGRP3 when bound to this RLK would negatively regulate its kinase activity, inhibiting cell expansion. Here, we review recent functional studies on AtGRP3 that corroborate this model and suggest that AtGRP3/AtWAK1 complex regulates also defense signaling pathways. On the other hand, we show new data on AtGRP3-overexpressing plants indicating that its role in aluminum signaling pathways, as previously observed for elicitor signaling, seems to be more complex than a simple negative regulator.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , Alumínio/toxicidade , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Membrana/genética , Proteínas Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
7.
Plant Physiol Biochem ; 106: 101-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27156134

RESUMO

Quantitative real-time PCR (RT-qPCR) is one of the most powerful and sensitive techniques to the study of gene expression. Several factors influence RT-qPCR performance though, including the stability of the reference genes used for data normalization. While the selection of appropriate reference genes is crucial for accurate and reliable gene expression analysis, no suitable reference genes have been previously identified in castor bean under drought stress. In this study, the expression stability of eleven mRNAs, thirteen microRNAs (miRNAs) and one small nuclear RNA were analyzed in roots and leaves across different levels of water deficit. Three different algorithms were employed to analyze the RT-qPCR data, and the resulting outputs were merged using a non-weighted unsupervised rank aggregation method. Our analysis indicated that the Elongation factor 1-beta (EF1B), Protein phosphatase 2A (PP2A) and ADP-ribosylation factor (ADP) ranked as the best candidates across diverse samples submitted to different levels of drought conditions. EF1B and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and EF1B and SKP1/ASK-interacting protein 16 (SKIP16) were found as the most suitable reference genes for expression analysis in roots and leaves, respectively. In addition, miRNAs miR168, miR160 and miR397 were selected as optimal reference genes across all tissues and treatments. miR168 and miR156 were recommended as reference for roots, while miR168 and miR160 were recommended for leaves. Together, our results constitute the first attempt to identify and validate the most suitable reference genes for accurate normalization of gene expression in castor bean under drought stress.


Assuntos
Secas , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Ricinus communis/genética , Estresse Fisiológico/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Padrões de Referência , Software
8.
PLoS One ; 11(3): e0150583, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26939065

RESUMO

AtGRP3 is a glycine-rich protein (GRP) from Arabidopsis thaliana shown to interact with the receptor-like kinase AtWAK1 in yeast, in vitro and in planta. In this work, phenotypic analyses using transgenic plants were performed in order to better characterize this GRP. Plants of two independent knockout alleles of AtGRP3 develop longer roots suggesting its involvement in root size determination. Confocal microscopy analysis showed an abnormal cell division and elongation in grp3-1 knockout mutants. Moreover, we also show that grp3-1 exhibits an enhanced Aluminum (Al) tolerance, a feature also described in AtWAK1 overexpressing plants. Together, these results implicate AtGRP3 function root size determination during development and in Al stress.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Membrana/genética , Raízes de Plantas/genética , Proteínas Quinases/genética , Alumínio/toxicidade , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/biossíntese , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Proteínas de Membrana/biossíntese , Microscopia Confocal , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Proteínas Quinases/biossíntese
9.
Plant Signal Behav ; 10(1): e977706, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25482757

RESUMO

Over the past decades, several studies indicate a correlation between the phytohormone auxin and cell division. The molecular players of this signaling pathway are now being uncovered. DNA Binding Protein1 from Arabidopsis (AtDBP1) is an auxin-inducible gene able to bind DNA non-specifically. In this work the tissue-expression pattern of this gene was investigated. Promoter-GUS analysis demonstrated that the AtDBP1 promoter is active in regions exhibiting intense cell division such as meristems and nematode feeding sites. Also, the promoter expression was modulated upon incubation with cell cycle blockers, indicating a potential role in cell division for this gene. Lastly, AtDBP1 antisense plants presented a higher insensitivity to auxin, and interfered negatively with auxin-induced callus formation and reduced apical dominance.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Ácidos Indolacéticos/farmacologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Arabidopsis/genética , Clonagem Molecular , DNA Complementar , DNA de Plantas , Fluorimunoensaio , Genoma de Planta , Biblioteca Genômica , Ácidos Indolacéticos/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Recombinantes
10.
Plant Signal Behav ; 7(12): 1544-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23073009

RESUMO

The Arabidopsis LOB-domain (LBD) gene family is composed by 43 members divided in two classes based on amino acid conservation within the LOB-domain. The LOB domain is known to be responsible for DNA binding and protein-protein interactions. There is very little functional information available for most genes in the LBD family and many lbd single mutants do not exhibit conspicuous phenotypes. One plausible explanation for the limited loss-of-function phenotypes observed in this family is that LBD genes exhibit significant functional redundancy. Here we discuss an example of one phylogenetic subgroup of the LBD family, in which genes that are closely related based on phylogeny exhibit distinctly different expression patterns and do not have overlapping functions. We discuss the challenges of using phylogenetic analyses to predict redundancy in gene families.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Filogenia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Pólen/metabolismo
11.
Plant Signal Behav ; 5(2): 99-104, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20009520

RESUMO

The first plant glycine-rich proteins (GRPs) have been isolated more than 20 years ago based on their specific expression pattern and/or modulation by several biotic and abiotic factors. This superfamily is characterized by the presence of a glycine-rich domain arranged in (Gly)(n)-X repeats. The presence of additional motifs, as well as the nature of the glycine repeats, groups them in different classes. The diversity in structure as well as in expression pattern, modulation and sub-cellular localization have always indicated that these proteins, although classified as members of the same superfamily, would perform different functions in planta. Only now, two decades later, with the first functional characterizations of plant GRPs their involvement in diverse biological and biochemical processes are being uncovered. Here, we review the so far ascribed functions of plant GRPs.


Assuntos
Glicina/metabolismo , Proteínas de Plantas/metabolismo , Motivos de Aminoácidos , Parede Celular/fisiologia , Temperatura Baixa , Flores/fisiologia , Genes de Plantas , Ligantes , Metabolismo dos Lipídeos , Família Multigênica , Pressão Osmótica , Pólen/fisiologia , Proteínas Quinases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico
12.
Genet. mol. biol ; 28(3,suppl): 608-624, Nov. 2005. ilus, tab
Artigo em Inglês | LILACS | ID: lil-440448

RESUMO

The occurrence of quasi-repetitive glycine-rich peptides has been reported in different organisms. Glycine-rich regions are proposed to be involved in protein-protein interactions in some mammalian protein families. In plants, a set of glycine-rich proteins (GRPs) was characterized several years ago, and since then a wealth of new GRPs have been identified. GRPs may have very diverse sub-cellular localization and functions. The only common feature among all different GRPs is the presence of glycine-rich repeat domains. The expression of genes encoding GRPs is developmentally regulated, and also induced, in several plant genera, by physical, chemical and biological factors. In addition to the highly modulated expression, several GRPs also show tissue-specific localization. GRPs specifically expressed in xylem, phloem, epidermis, anther tapetum and roots have been described. In this paper, the structural and functional features of these proteins in Eucalyptus are summarized. Since this is the first description of GRPs in this species, particular emphasis has been given to the expression pattern of these genes by analyzing their abundance and prevalence in the different cDNA-libraries of the Eucalyptus Genome Sequencing Project Consortium (ForEST). The comparison of GRPs from Eucalyptus and other species is also discussed


Assuntos
Eucalyptus , Etiquetas de Sequências Expressas , Glicina , Bases de Dados Genéticas , Proteínas de Plantas
13.
Genet. mol. biol ; 24(1/4): 263-273, 2001. ilus, tab
Artigo em Inglês | LILACS | ID: lil-313899

RESUMO

Desde o isolamento da primeira proteína rica em glicina (GRP) em plantas, um grande número de novas GRPs vem sendo identificado. Seu padräo de expressäo altamente específico, embora variado, em conjunto com as diferentes localizações sub-celulares de alguns dos tipos de GRPs, claramente indica que estas proteínas encontram-se envolvidas em diversos processos fisiológicos independentes. Embora ainda sem uma clara definiçäo do papel de GRPs na célula vegetal, estudos realizados com estas proteínas têm resultado em novos e interessantes esclarecimentos da biologia celular e molecular de plantas. Promotores com regulaçäo complexa, assim como distintos mecanismos de regulaçäo da expressäo gênica tem sido demonstrados. Novas vias de endereçamento de proteínas tais como a exportaçäo de GRPs para diferentes tipos celulares, tem sido observados. Estes dados mostram que as GRPs podem constituir marcadores e/ou modelos interessantes para a compreensäo de distintos aspectos da biologia vegetal. Neste trabalho, características estruturais e funcionais deste tipo de proteínas em cana-de-açúcar (Saccharum officinarum L.) foram analisadas. Uma vez que esta é a primeira descriçäo deste tipo de proteínas, em cana-de-açúcar, especial atençäo foi dada para o padräo de expressäo destes genes, analisando-se a abundância e prevalência de cada um dos genes nas diferentes bibliotecas de cDNA do projeto Sequenciamento de ESTs de cana-de-açúcar (SUCEST). A comparaçäo das GRPs de cana-de-açúcar com as GRPs descritas em outras espécies também será discutida.


Assuntos
Etiquetas de Sequências Expressas , Proteínas de Plantas/genética , Plantas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa