Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526683

RESUMO

Knowledge of the temperature dependence of the isobaric specific heat (Cp) upon deep supercooling can give insights regarding the anomalous properties of water. If a maximum in Cp exists at a specific temperature, as in the isothermal compressibility, it would further validate the liquid-liquid critical point model that can explain the anomalous increase in thermodynamic response functions. The challenge is that the relevant temperature range falls in the region where ice crystallization becomes rapid, which has previously excluded experiments. Here, we have utilized a methodology of ultrafast calorimetry by determining the temperature jump from femtosecond X-ray pulses after heating with an infrared laser pulse and with a sufficiently long time delay between the pulses to allow measurements at constant pressure. Evaporative cooling of ∼15-µm diameter droplets in vacuum enabled us to reach a temperature down to ∼228 K with a small fraction of the droplets remaining unfrozen. We observed a sharp increase in Cp, from 88 J/mol/K at 244 K to about 218 J/mol/K at 229 K where a maximum is seen. The Cp maximum is at a similar temperature as the maxima of the isothermal compressibility and correlation length. From the Cp measurement, we estimated the excess entropy and self-diffusion coefficient of water and these properties decrease rapidly below 235 K.

2.
Proc Natl Acad Sci U S A ; 118(22)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039712

RESUMO

Although ultrafast manipulation of magnetism holds great promise for new physical phenomena and applications, targeting specific states is held back by our limited understanding of how magnetic correlations evolve on ultrafast timescales. Using ultrafast resonant inelastic X-ray scattering we demonstrate that femtosecond laser pulses can excite transient magnons at large wavevectors in gapped antiferromagnets and that they persist for several picoseconds, which is opposite to what is observed in nearly gapless magnets. Our work suggests that materials with isotropic magnetic interactions are preferred to achieve rapid manipulation of magnetism.

3.
J Chem Phys ; 155(21): 214501, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879659

RESUMO

The structural changes of water upon deep supercooling were studied through wide-angle x-ray scattering at SwissFEL. The experimental setup had a momentum transfer range of 4.5 Å-1, which covered the principal doublet of the x-ray structure factor of water. The oxygen-oxygen structure factor was obtained for temperatures down to 228.5 ± 0.6 K. Similar to previous studies, the second diffraction peak increased strongly in amplitude as the structural change accelerated toward a local tetrahedral structure upon deep supercooling. We also observed an anomalous trend for the second peak position of the oxygen-oxygen structure factor (q2). We found that q2 exhibits an unprecedented positive partial derivative with respect to temperature for temperatures below 236 K. Based on Fourier inversion of our experimental data combined with reference data, we propose that the anomalous q2 shift originates from that a repeat spacing in the tetrahedral network, associated with all peaks in the oxygen-oxygen pair-correlation function, gives rise to a less dense local ordering that resembles that of low-density amorphous ice. The findings are consistent with that liquid water consists of a pentamer-based hydrogen-bonded network with low density upon deep supercooling.

4.
Opt Express ; 28(8): 11117-11127, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403629

RESUMO

Many of the scientific applications for X-ray free-electron lasers seek to exploit the ultrashort pulse durations of intense X-rays to obtain femtosecond time resolution of various processes in a "pump-probe" scheme. One of the limiting factors for such experiments is the timing jitter between the X-rays and ultrashort pulses from more conventional lasers operating at near-optical wavelengths. In this work, we investigate the potential of using X-ray-induced changes in the optical second harmonic generation efficiency of a nonlinear crystal to retrieve single-shot arrival times of X-ray pulses with respect to optical laser pulses. Our experimental results and simulations show changes to the efficiency of the second harmonic generation of 12%, approximately three times larger than the measured changes in the transmission of the 800 nm center-wavelength fundamental pulse. Further experiments showing even larger changes in the transmission of 400 nm center-wavelength pulses show that the mechanism of the second harmonic generation efficiency modulation is mainly the result of X-ray-induced changes in the linear absorption coefficients near 400 nm. We demonstrate and characterize a cross-correlation tool based on this effect in reference to a previously demonstrated method of X-ray/optical cross-correlation.

5.
J Synchrotron Radiat ; 26(Pt 6): 2081-2085, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721754

RESUMO

The transmission of the optical components of the Bernina branch of the Aramis beamline at SwissFEL has been measured with an X-ray gas monitor from DESY and compared with a PSI gas detector upstream of the optical components. The transmission efficiencies of the Mo, Si and SiC mirror coatings of the Aramis beamline and the various other in-beam components were evaluated and compared with theoretical calculations, showing an agreement of 6% or better in all cases. The experiment has also shown the efficacy of the high-harmonic rejection mirrors at the Bernina branch of the Aramis beamline at SwissFEL, and characterized the transmission efficiency of the on-line spectrometer in the Aramis beamline. The theoretical transmission of the mirror coatings match the experimental data to within 7%. The accuracy of these measurements was checked against a radiative bolometer from a Japanese collaboration and found to agree to a level of 4% or better. Further comparisons with a diamond detector from a US-based inter-institute collaboration demonstrated a good agreement for the attenuator settings of the beamline.

6.
J Synchrotron Radiat ; 26(Pt 3): 874-886, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31074452

RESUMO

The Bernina instrument at the SwissFEL Aramis hard X-ray free-electron laser is designed for studying ultrafast phenomena in condensed matter and material science. Ultrashort pulses from an optical laser system covering a large wavelength range can be used to generate specific non-equilibrium states, whose subsequent temporal evolution can be probed by selective X-ray scattering techniques in the range 2-12 keV. For that purpose, the X-ray beamline is equipped with optical elements which tailor the X-ray beam size and energy, as well as with pulse-to-pulse diagnostics that monitor the X-ray pulse intensity, position, as well as its spectral and temporal properties. The experiments can be performed using multiple interchangeable endstations differing in specialization, diffractometer and X-ray analyser configuration and load capacity for specialized sample environment. After testing the instrument in a series of pilot experiments in 2018, regular user operation begins in 2019.

7.
Rep Prog Phys ; 79(6): 064503, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27223639

RESUMO

We review some recent advances in the use of optical fields at terahertz frequencies to drive the lattice of complex materials. We will focus on the control of low energy collective properties of solids, which emerge on average when a high frequency vibration is driven and a new crystal structure induced. We first discuss the fundamentals of these lattice rearrangements, based on how anharmonic mode coupling transforms an oscillatory motion into a quasi-static deformation of the crystal structure. We then discuss experiments, in which selectively changing a bond angle turns an insulator into a metal, accompanied by changes in charge, orbital and magnetic order. We then address the case of light induced non-equilibrium superconductivity, a mysterious phenomenon observed in some cuprates and molecular materials when certain lattice vibrations are driven. Finally, we show that the dynamics of electronic and magnetic phase transitions in complex-oxide heterostructures follow distinctly new physical pathways in case of the resonant excitation of a substrate vibrational mode.

8.
Struct Dyn ; 11(2): 024308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38586277

RESUMO

We present a new setup for resonant inelastic hard x-ray scattering at the Bernina beamline of SwissFEL with energy, momentum, and temporal resolution. The compact R = 0.5 m Johann-type spectrometer can be equipped with up to three crystal analyzers and allows efficient collection of RIXS spectra. Optical pumping for time-resolved studies can be realized with a broad span of optical wavelengths. We demonstrate the performance of the setup at an overall ∼180 meV resolution in a study of ground-state and photoexcited (at 400 nm) honeycomb 5d iridate α-Li2IrO3. Steady-state RIXS spectra at the iridium L3-edge (11.214 keV) have been collected and are in very good agreement with data collected at synchrotrons. The time-resolved RIXS transients exhibit changes in the energy loss region <2 eV, whose features mostly result from the hopping nature of 5d electrons in the honeycomb lattice. These changes are ascribed to modulations of the Ir-to-Ir inter-site transition scattering efficiency, which we associate to a transient screening of the on-site Coulomb interaction.

9.
Nat Commun ; 14(1): 7778, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012165

RESUMO

Quantifying the dynamics of normal modes and how they interact with other excitations is of central importance in condensed matter. Spin-lattice coupling is relevant to several sub-fields of condensed matter physics; examples include spintronics, high-Tc superconductivity, and topological materials. However, experimental approaches that can directly measure it are rare and incomplete. Here we use time-resolved X-ray diffraction to directly access the ultrafast motion of atoms and spins following the coherent excitation of an electromagnon in a multiferroic hexaferrite. One striking outcome is the different phase shifts relative to the driving field of the two different components. This phase shift provides insight into the excitation process of such a coupled mode. This direct observation of combined lattice and magnetization dynamics paves the way to access the mode-selective spin-lattice coupling strength, which remains a missing fundamental parameter for ultrafast control of magnetism and is relevant to a wide variety of materials.

10.
J Phys Condens Matter ; 33(37)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34098537

RESUMO

Modern techniques for the investigation of correlated materials in the time domain combine selective excitation in the THz frequency range with selective probing of coupled structural, electronic and magnetic degrees of freedom using x-ray scattering techniques. Cryogenic sample temperatures are commonly required to prevent thermal occupation of the low energy modes and to access relevant material ground states. Here, we present a chamber optimized for high-field THz excitation and (resonant) x-ray diffraction at sample temperatures between 5 and 500 K. Directly connected to the beamline vacuum and featuring both a Beryllium window and an in-vacuum detector, the chamber covers the full (2-12.7) keV energy range of the femtosecond x-ray pulses available at the Bernina endstation of the SwissFEL free electron laser. Successful commissioning experiments made use of the energy tunability to selectively track the dynamics of the structural, magnetic and orbital order of Ca2RuO4and Tb2Ti2O7at the Ru (2.96 keV) and Tb (7.55 keV)L-edges, respectively. THz field amplitudes up to 1.12 MV cm-1peak field were demonstrated and used to excite the samples at temperatures as low as 5 K.

11.
Sci Rep ; 11(1): 21787, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750381

RESUMO

Photosystem I (PS I) has a symmetric structure with two highly similar branches of pigments at the center that are involved in electron transfer, but shows very different efficiency along the two branches. We have determined the structure of cyanobacterial PS I at room temperature (RT) using femtosecond X-ray pulses from an X-ray free electron laser (XFEL) that shows a clear expansion of the entire protein complex in the direction of the membrane plane, when compared to previous cryogenic structures. This trend was observed by complementary datasets taken at multiple XFEL beamlines. In the RT structure of PS I, we also observe conformational differences between the two branches in the reaction center around the secondary electron acceptors A1A and A1B. The π-stacked Phe residues are rotated with a more parallel orientation in the A-branch and an almost perpendicular confirmation in the B-branch, and the symmetry breaking PsaB-Trp673 is tilted and further away from A1A. These changes increase the asymmetry between the branches and may provide insights into the preferential directionality of electron transfer.


Assuntos
Complexo de Proteína do Fotossistema I/química , Vitamina K 1/química , Cristalografia por Raios X , Fotossíntese , Estrutura Terciária de Proteína , Temperatura , Thermosynechococcus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa