Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 26(12): 15769-15784, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114833

RESUMO

We propose a method for improving the quantification of neutron imaging measurements with scintillator-camera based detectors by correcting for systematic biases introduced by scattered neutrons and other sources such as light reflections in the detector system. This method is fully experimental, using reference measurements with a grid of small black bodies (BB) to measure the bias contributions directly. Using two test samples, one made of lead alloy and having a moderate (20%) neutron transmission and one made of stainless-steel and having a very low (1%) transmission, we evaluated the improvement brought by this method in reducing both the average quantification bias and the uncertainty around this average bias after tomographic reconstruction. The results show that a reduction of the quantification bias of up to one order of magnitude can be obtained. For moderately transparent samples, little sensitivity is observed to the parameters used for the correction. For the more challenging sample with very low transmission, a correct placement of the BB grid is of utmost importance for a successful correction.

2.
Eur J Pharm Biopharm ; 127: 104-111, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29448012

RESUMO

Staked-in needle pre-fillable syringes (SIN-PFS) are a convenient delivery system widely established in the growing pharmaceutical market. Under specific storage conditions, the needle of PFS containing high concentration drug product (DP) solution is prone to clogging, which prevents administration of the liquid. The purpose of this study is to clarify the clogging phenomenon of SIN-PFS and to elucidate the role of water vapor transmission via the needle shield. The presence of liquid within needles is a prerequisite condition for clogging and was investigated non-invasively by neutron imaging (NI) to confirm that liquid can migrate into the needle under certain processing conditions. The water vapor transmission rate (WVTR) of different needle shields was measured and the impact of temperature and relative humidity (rH) on the WVTR was investigated on sheets with the same composition as used in commercial needle shields. Our study clearly showed that the partial vapor pressure difference (ΔPP) across the needle shield is the dominant driving factor for water vapor transmission. A linear correlation between ΔPP and WVTR was found and a model to predict the water vapor transmission for PFS under specific storage conditions was developed. The impact of the WVTR on needle clogging was confirmed by clogging tests performed on SIN-PFS stored under different conditions. Thereby, we clearly show that high water loss induced by higher WVTR can be correlated to an increased occurrence of needle clogging. In conclusion, the WVTR of the needle shield plays a key role in needle clogging and the established WVTR model can be employed to assess the clogging risk for product development.


Assuntos
Gases/química , Agulhas , Seringas , Água/química , Umidade , Pressão , Vapor , Temperatura
3.
Eur J Pharm Biopharm ; 128: 272-281, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29730259

RESUMO

Staked-in-needle prefilled syringes (SIN-PFS) are widely used for the parenteral administration of drug product solutions. During stability studies, clogging of the injection needle was observed in syringes filled with concentrated antibody solution. A prerequisite for this phenomenon is that liquid has entered the needle. In this study, we characterized the mechanism causing the entry and movement of liquid in the needle using neutron imaging without manipulating the container closure integrity of the syringe. The gas pressure difference between inside and outside of the syringe was identified as the major cause of liquid movement. The influence of external factors, such as temperature fluctuation and physical pressure on the stopper, were tested and were confirmed to have a relevant impact on the processes of liquid entering and moving inside the injection needle. In a second step, the solidification process of the liquid segments inside the needle via solvent evaporation was further investigated, and the process was found to be dependent on storage time, environmental climate and interaction between the drug product solution and the needle surface. The presence of air/liquid segments was identified as a further factor for the stochastic behavior of needle clogging. For the first time, this fundamental mechanism behind the needle clogging issue was investigated in depth and the results will help to reduce the defect rate for clogged SIN-PFS products.


Assuntos
Embalagem de Medicamentos/métodos , Agulhas , Preparações Farmacêuticas/química , Armazenamento de Medicamentos , Preparações Farmacêuticas/administração & dosagem , Pressão , Solubilidade , Seringas , Temperatura , Fatores de Tempo
4.
Sci Rep ; 8(1): 17845, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30552389

RESUMO

Structural properties of cohesive powders are dominated by their microstructural composition. Powders with a fractal microstructure show particularly interesting properties during compaction where a microstructural transition and a fractal breakdown happen before compaction and force transport. The study of this phenomenon has been challenging due to its long-range effect and the subsequent necessity to characterize these microstructural changes on a macroscopic scale. For the detailed investigation of the complex nature of powder compaction for various densification states along with the heterogeneous breakdown of the fractal microstructure we applied neutron dark-field imaging in combination with a variety of supporting techniques with various spatial resolutions, field-of-views and information depths. We used scanning electron microscopy to image the surface microstructure in a small field-of-view and X-ray tomography to image density variations in 3D with lower spatial resolution. Non-local spin-echo small-angle neutron scattering results are used to evaluate fitting models later used as input parameters for the neutron dark-field imaging data analysis. Finally, neutron dark-field imaging results in combination with supporting measurements using scanning electron microscopy, X-ray tomography and spin-echo small angle scattering allowed us to comprehensively study the heterogeneous transition from a fractal to a homogeneous microstructure of a cohesive powder in a quantitative manner.

5.
J Appl Crystallogr ; 51(Pt 2): 386-394, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29657567

RESUMO

The development of neutron imaging from a qualitative inspection tool towards a quantitative technique in materials science has increased the requirements for accuracy significantly. Quantifying the thickness or the density of polycrystalline samples with high accuracy using neutron imaging has two main problems: (i) the scattering from the sample creates artefacts on the image and (ii) there is a lack of specific reference attenuation coefficients. This work presents experimental and simulation results to explain and approach these problems. Firstly, a series of neutron radiography and tomography experiments of iron, copper and vanadium are performed and serve as a reference. These materials were selected because they attenuate neutrons mainly through coherent (Fe and Cu) and incoherent (V) scattering. Secondly, an ad hoc Monte Carlo model was developed, based on beamline, sample and detector parameters, in order to simulate experiments, understand the physics involved and interpret the experimental data. The model, developed in the McStas framework, uses a priori information about the sample geometry and crystalline structure, as well as beamline settings, such as spectrum, geometry and detector type. The validity of the simulations is then verified with experimental results for the two problems that motivated this work: (i) the scattering distribution in transmission imaging and (ii) the calculated attenuation coefficients.

6.
J Struct Biol ; 159(1): 46-55, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17398115

RESUMO

Synchrotron radiation phase-contrast X-ray tomographic microscopy (srPCXTM) was applied to observation and identification of the features of spruce anatomy at the cellular lengthscale. The pilot experiments presented in the paper clearly revealed the features of the heartwood of Spruce (Picea abies [L.] Karst.), such as lumina and pits connecting the lumina, with a theoretical voxel size of 0.7 x 0.7 x 0.7 microm(3). The experiments were carried out on microspecimens of heartwood, measuring approximately 200 by 200 micrometers in cross-section. The technique for production and preparation of wood microsamples was developed within the framework of this investigation. The total porosity of the samples was derived and the values of the microstructural parameters, such as the diameters of tracheid, cell wall thicknesses and pit diameters were assessed non-invasively. Microstructural features as thin/small as approximately 1.5 microm were revealed and reconstructed in 3D. It is suggested that the position of sub-voxel-sized features (such as position of tori in the bordered pit pairs) can be determined indirectly using watershed segmentation. Moreover, the paper discusses the practical issues connected with a pipelined phase-contrast synchrotron-based microtomography experiment and the possible future potentials of this technique in the domain of wood science.


Assuntos
Imageamento Tridimensional/métodos , Madeira/ultraestrutura , Imageamento Tridimensional/instrumentação , Microscopia , Picea , Porosidade , Manejo de Espécimes , Tomografia Computadorizada por Raios X , Madeira/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa