RESUMO
ABSTRACT: Currently, the role of DNA methylation in the immunoglobulin M (IgM) monoclonal gammopathy disease spectrum remains poorly understood. In the present study, a multiomics prospective analysis was conducted integrating DNA methylation, RNA sequencing (RNA-seq), and whole-exome sequencing data in 34 subjects (23 with Waldenström macroglobulinemia [WM], 6 with IgM monoclonal gammopathy of undetermined significance [MGUS], and 5 normal controls). Analysis was focused on defining differences between IgM gammopathies (WM/IgM-MGUS) compared with controls, and specifically between WM and IgM-MGUS. Between groups, genome-wide DNA methylation analysis demonstrated a significant number of differentially methylated regions that were annotated according to genomic region. Next, integration of RNA-seq data was performed to identify potentially epigenetically deregulated pathways. We found that pathways involved in cell cycle, metabolism, cytokine/immune signaling, cytoskeleton, tumor microenvironment, and intracellular signaling were differentially activated and potentially epigenetically regulated. Importantly, there was a positive enrichment of the CXCR4 signaling pathway along with several interleukin (interleukin 6 [IL-6], IL-8, and IL-15) signaling pathways in WM compared with IgM-MGUS. Further assessment of known tumor suppressor genes and oncogenes uncovered differential promoter methylation of several targets with concordant change in gene expression, including CCND1 and CD79B. Overall, this report defines how aberrant DNA methylation in IgM gammopathies may play a critical role in the epigenetic control of oncogenesis and key cellular functions.
Assuntos
Metilação de DNA , Epigênese Genética , Imunoglobulina M , Gamopatia Monoclonal de Significância Indeterminada , Macroglobulinemia de Waldenstrom , Humanos , Imunoglobulina M/genética , Macroglobulinemia de Waldenstrom/genética , Macroglobulinemia de Waldenstrom/imunologia , Masculino , Gamopatia Monoclonal de Significância Indeterminada/genética , Gamopatia Monoclonal de Significância Indeterminada/patologia , Gamopatia Monoclonal de Significância Indeterminada/metabolismo , Feminino , Idoso , Pessoa de Meia-Idade , Carcinogênese/genética , Paraproteinemias/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Estudos Prospectivos , Transdução de Sinais/genética , MultiômicaRESUMO
The open reading frame 8 (ORF8) protein, encoded by the SARS-CoV-2 virus after infection, stimulates monocytes/macrophages to produce pro-inflammatory cytokines. We hypothesized that a positive ex vivo monocyte response to ORF8 protein pre-COVID-19 would be associated with subsequent severe Coronavirus disease 2019 (COVID-19). We tested ORF8 ex vivo on peripheral blood mononuclear cells from 26 anonymous healthy blood donors and measured intracellular cytokine/ chemokine levels in monocytes by flow cytometry. The percentage of positive monocyte staining in the sample and change in mean fluorescence intensity (ΔMFI) after ORF8 were used to calculate the adjusted MFI for each cytokine. We then tested pre-COVID-19 peripheral blood mononuclear cell samples from 60 chronic lymphocytic leukemia (CLL) patients who subsequently developed COVID-19 infection. Severe COVID-19 was defined as hospitalization due to COVID-19. In the 26 normal donor samples, the adjusted MFI for interleukin (IL)-1ß, IL-6, IL-8, and CCL-2 were significantly different with ORF8 stimulation versus controls. We next analyzed monocytes from pre-COVID-19 PBMC samples from 60 CLL patients. The adjusted MFI to ORF8 stimulation of monocyte intracellular IL-1ß was associated with severe COVID-19 and a reactive ORF8 monocyte response was defined as an IL-1ß adjusted MFI ≥0.18 (sensitivity 67%, specificity 75%). The median time to hospitalization after infection in CLL patients with a reactive ORF8 response was 12 days versus not reached for patients with a non-reactive ORF8 response with a hazard ratio of 7.7 (95% confidence interval: 2.4-132; P=0.005). These results provide new insight on the monocyte inflammatory response to virus with implications in a broad range of disorders involving monocytes.
Assuntos
COVID-19 , Leucemia Linfocítica Crônica de Células B , Monócitos , SARS-CoV-2 , Humanos , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/complicações , COVID-19/imunologia , COVID-19/sangue , COVID-19/complicações , Masculino , Monócitos/metabolismo , Monócitos/imunologia , Monócitos/patologia , Feminino , Pessoa de Meia-Idade , Idoso , Proteínas Virais , Citocinas/metabolismo , Idoso de 80 Anos ou mais , AdultoRESUMO
Chromosome region maintenance protein 1 (CRM1) mediates protein export from the nucleus and is a new target for anticancer therapeutics. Broader application of KPT-330 (selinexor), a first-in-class CRM1 inhibitor recently approved for relapsed multiple myeloma and diffuse large B-cell lymphoma, have been limited by substantial toxicity. We discovered that salicylates markedly enhance the antitumor activity of CRM1 inhibitors by extending the mechanisms of action beyond CRM1 inhibition. Using salicylates in combination enables targeting of a range of blood cancers with a much lower dose of selinexor, thereby potentially mitigating prohibitive clinical adverse effects. Choline salicylate (CS) with low-dose KPT-330 (K+CS) had potent, broad activity across high-risk hematological malignancies and solid-organ cancers ex vivo and in vivo. The K+CS combination was not toxic to nonmalignant cells as compared with malignant cells and was safe without inducing toxicity to normal organs in mice. Mechanistically, compared with KPT-330 alone, K+CS suppresses the expression of CRM1, Rad51, and thymidylate synthase proteins, leading to more efficient inhibition of CRM1-mediated nuclear export, impairment of DNA-damage repair, reduced pyrimidine synthesis, cell-cycle arrest in S-phase, and cell apoptosis. Moreover, the addition of poly (ADP-ribose) polymerase inhibitors further potentiates the K+CS antitumor effect. K+CS represents a new class of therapy for multiple types of blood cancers and will stimulate future investigations to exploit DNA-damage repair and nucleocytoplasmic transport for cancer therapy in general.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Colina/análogos & derivados , Reparo do DNA/efeitos dos fármacos , Hidrazinas/farmacologia , Carioferinas/antagonistas & inibidores , Linfoma não Hodgkin/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Salicilatos/farmacologia , Triazóis/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Colina/administração & dosagem , Colina/efeitos adversos , Colina/farmacologia , Replicação do DNA/efeitos dos fármacos , DNA de Neoplasias/efeitos dos fármacos , Combinação de Medicamentos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidrazinas/administração & dosagem , Hidrazinas/efeitos adversos , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/patologia , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Ftalazinas/administração & dosagem , Ftalazinas/farmacologia , Piperazinas/administração & dosagem , Piperazinas/farmacologia , Distribuição Aleatória , Salicilatos/administração & dosagem , Salicilatos/efeitos adversos , Triazóis/administração & dosagem , Triazóis/efeitos adversos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Exportina 1RESUMO
Non-follicular low-grade B-cell lymphomas (LGBCL) are biologically diverse entities that share clinical and histologic features that make definitive pathologic categorization challenging. While most patients with LGBCL have an indolent course, some experience aggressive disease, highlighting additional heterogeneity across these subtypes. To investigate the potential for shared biology across subtypes, we performed RNA sequencing and applied machine learning approaches that identified five clusters of patients that grouped independently of subtype. One cluster was characterized by inferior outcome, upregulation of cell cycle genes, and increased tumor immune cell content. Integration of whole exome sequencing identified novel LGBCL mutations and enrichment of TNFAIP3 and BCL2 alterations in the poor survival cluster. Building on this, we further refined a transcriptomic signature associated with early clinical failure in two independent cohorts. Taken together, this study identifies unique clusters of LGBCL defined by novel gene expression signatures and immune profiles associated with outcome across diagnostic subtypes.
Assuntos
Linfoma de Células B , Humanos , Linfoma de Células B/patologia , Perfilação da Expressão Gênica , TranscriptomaRESUMO
Erdheim-Chester disease (ECD) is a histiocytic neoplasm that predominantly harbors mitogen-activated protein kinase (MAPK) pathway variants. MAPK inhibitors typically are effective treatments, but mutations outside the MAPK pathway, such as CSF1R variants, may cause refractory ECD. We describe a patient with a novel somatic mutation in CSF1R (CSF1RR549_E554delinsQ ) that resulted in refractory ECD affecting the central nervous system. Cell model studies, RNA sequencing analysis, and in silico protein modeling suggested that she had a gain-of-function mutation occurring in a region critical for autoinhibition. The patient was treated with pexidartinib, a CSF1R inhibitor, and has had a complete clinical and metabolic response lasting more than 1.5 years to date. To our knowledge, this is the first report to describe successful treatment of a patient with ECD by using an agent that specifically targets CSF1R. This case also highlights the critical role of individualized molecular profiling to identify novel therapeutic targets in ECD.
Assuntos
Aminopiridinas/administração & dosagem , Doença de Erdheim-Chester , Mutação , Pirróis/administração & dosagem , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Linhagem Celular , Doença de Erdheim-Chester/tratamento farmacológico , Doença de Erdheim-Chester/genética , Feminino , HumanosRESUMO
BACKGROUND: Despite the unprecedented success of ibrutinib in lymphoma therapy, the development of ibrutinib resistance due to acquired BTK or PLCγ2 mutations has become a new clinical problem. However, not all resistance is mediated by these mutations and these mechanisms are poorly understood due to a lack of study tools that truly recapitulate this clinical scenario. METHODS: We established a novel patient-derived ibrutinib-resistant mantle cell lymphoma (MCL) line named MCIR1. Using immunological, molecular, and cytogenetic approaches, we comprehensively characterized MCIR1 and further demonstrated its utility in the study of resistance mechanisms and treatments to overcome this resistance. RESULTS: We show that MCIR1 is a bona fide ibrutinib-resistant MCL cell line with normal BTK-/PLCγ2 but ibrutinib-resistant ERK1/2 and AKT1 signaling. RNA-Seq analysis revealed a robust non-canonical NF-kB signaling that drives the ibrutinib resistance. We also demonstrate the potential utility of a MCIR1-based cell and mouse model for the discovery of new treatments to overcome BTK inhibitor resistance. CONCLUSIONS: We have established the first patient-derived ibrutinib-resistant MCL cell line MCIR1 that lacks BTK or PLCγ2 mutations but exhibits a hyperactive non-canonical NF-kB pathway. We further demonstrate its utility in the discovery and validation of new drugs to overcome this resistance.
Assuntos
Adenina/análogos & derivados , Antineoplásicos/farmacologia , Linfócitos B/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Efeito Fundador , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Adenina/farmacologia , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Linfócitos B/metabolismo , Linfócitos B/patologia , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , NF-kappa B/genética , NF-kappa B/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de SinaisRESUMO
Ibrutinib-related data in Waldenström macroglobulinaemia (WM) remain sparse, particularly outside of trials. We report on 80 patients [previously treated, n = 67 (84%), treatment-naïve, n = 13 (16%)] with WM, evaluated consecutively at Mayo Clinic, who received ibrutinib off-study after its approval in 2015 for WM. Overall response rate (ORR) was 91%; major-response rate (MRR) was 78%. The median time to first response and best response was 2·9 [95% confidence interval (CI): 2-4] and 5·7 (95% CI: 4-12) months, respectively. The median follow-up was 19 (95% CI: 14-21) months; 18-month progression-free survival (PFS) was 82%. The median time on therapy was 12·5 (95% CI: 9·3-16·7) months, and the median duration-of-response was 32 (range: 23-32) months. Twenty-five patients (31%) had discontinued therapy at last follow-up (68% due to treatment-related toxicities) and 18% of patients required dose reduction. Fatigue (12%) and atrial-fibrillation (11%) were common non-haematological toxicities. IgM rebound occurred in 36% of patients who abruptly discontinued ibrutinib. Following ibrutinib discontinuation, 84% of patients received subsequent treatment, achieving an ORR of 57% and MRR of 50%. The median PFS from commencement of subsequent salvage therapy was 18 months. Ibrutinib therapy, outside of clinical trials, is effective in WM, but is associated with toxicities and challenges, including IgM rebound and a high drug discontinuation rate for reasons other than disease progression.
Assuntos
Antineoplásicos/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Macroglobulinemia de Waldenstrom/tratamento farmacológico , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Progressão da Doença , Relação Dose-Resposta a Droga , Feminino , Seguimentos , Doenças Hematológicas/induzido quimicamente , Humanos , Imunoglobulina M/sangue , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Piperidinas , Padrões de Prática Médica/estatística & dados numéricos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/administração & dosagem , Pirazóis/efeitos adversos , Pirimidinas/administração & dosagem , Pirimidinas/efeitos adversos , Terapia de Salvação/métodos , Resultado do Tratamento , Macroglobulinemia de Waldenstrom/imunologiaRESUMO
Genetic aberrations, including trisomies 3 and 18, and well-defined IGH translocations, have been described in marginal zone lymphomas (MZLs); however, these known genetic events are present in only a subset of cases. Here, we report the cloning of an IGH translocation partner on chromosome X, t(X;14)(p11.4;q32) that deregulates expression of an poorly characterized orphan G-protein-coupled receptor, GPR34. Elevated GPR34 gene expression was detected independent of the translocation in multiple subtypes of non-Hodgkin lymphoma and distinguished a unique molecular subtype of MZL. Increased expression of GPR34 was also detected in tissue from brain tumors and surface expression of GPR34 was detected on human MZL tumor cells and normal immune cells. Overexpression of GPR34 in lymphoma and HeLa cells resulted in phosphorylation of ERK, PKC, and CREB; induced CRE, AP1, and NF-κB-mediated gene transcription; and increased cell proliferation. In summary, these results are the first to identify a role for a GPR34 in lymphoma cell growth, provide insight into GPR34-mediated signaling, identify a genetically unique subset of MZLs that express high levels of GPR34, and suggest that MEK inhibitors may be useful for treatment of GPR34-expressing tumors.
Assuntos
Cromossomos Humanos Par 14 , Cromossomos Humanos X , Linfoma de Zona Marginal Tipo Células B/genética , Receptores de Lisofosfolipídeos/genética , Translocação Genética , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Pontos de Quebra do Cromossomo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ordem dos Genes , Células HeLa , Humanos , Linfoma de Zona Marginal Tipo Células B/metabolismo , Linfoma não Hodgkin/genética , Linfoma não Hodgkin/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Dados de Sequência Molecular , Receptores de Lisofosfolipídeos/metabolismo , Fatores de Transcrição SOXC/genética , Transdução de SinaisRESUMO
This study examined the long-term effects of a lifestyle modification program delivered at German Bundesliga football clubs. Weekly 90-minute group sessions over 12 weeks combined health education and physical activity and were delivered by coaches affiliated with the football clubs. A total of 371 men (mean age 49.7 years [SD = 7.6]) attended 41 classes at 19 clubs in 2017 and 2018 and participated in the long-term follow-up. Primary outcome was weight-loss at follow-up with a mean observation period of 20.4 months after baseline. Measures were taken partly by research staff and partly by participants themselves. At baseline, the men had a mean weight of 111.3 kg (SD = 16.9). Three months after baseline (posttest), the men had lost a mean of 6.3 kg (95% CI: 5.7-6.9). From posttest to follow-up, growth curve model showed men lost an average of 0.8 kg (95% CI: 0.2-1.4). Weight regain from posttest to follow-up of at least 3% was observed in 75 participants (20.2%) and was associated with less improvement in vegetable consumption in an adjusted logistic regression model. The data suggest that participation in a male-only lifestyle modification program offered by German football clubs may lead to sustained weight loss, but lack of a randomized control group and drop-outs prevent generalization of the results.
RESUMO
This study sheds light on the pivotal role of the oncoprotein DEK in B-cell lymphoma. We reveal DEK expression correlates with increased tumor proliferation and inferior overall survival in cases diagnosed with low-grade B-cell lymphoma (LGBCL). We also found significant correlation between DEK expression and copy number alterations in LGBCL tumors, highlighting a novel mechanism of LGBCL pathogenesis that warrants additional exploration. To interrogate the mechanistic role of DEK in B-cell lymphoma, we generated a DEK knockout cell line model, which demonstrated DEK depletion caused reduced proliferation and altered expression of key cell cycle and apoptosis-related proteins, including Bcl-2, Bcl-xL, and p53. Notably, DEK depleted cells showed increased sensitivity to apoptosis-inducing agents, including venetoclax and staurosporine, which underscores the therapeutic potential of targeting DEK in B-cell lymphomas. Overall, our study contributes to a better understanding of DEK's role as an oncoprotein in B-cell lymphomas, highlighting its potential as both a promising therapeutic target and a novel biomarker for aggressive LGBCL. Further research elucidating the molecular mechanisms underlying DEK-mediated tumorigenesis could pave the way for improved treatment strategies and better clinical outcomes for patients with B-cell lymphoma.
Assuntos
Proliferação de Células , Proteínas Cromossômicas não Histona , Linfoma de Células B , Proteínas Oncogênicas , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Humanos , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Linfoma de Células B/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/patologia , Linhagem Celular Tumoral , Linfócitos B/metabolismo , Linfócitos B/patologia , Apoptose , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Gradação de TumoresRESUMO
Follicular lymphoma (FL) is an indolent non-Hodgkin lymphoma of germinal center origin, which presents with significant biologic and clinical heterogeneity. Using RNA-seq on B cells sorted from 87 FL biopsies, combined with machine-learning approaches, we identify 3 transcriptional states that divide the biological ontology of FL B cells into inflamed, proliferative, and chromatin-modifying states, with relationship to prior GC B cell phenotypes. When integrated with whole-exome sequencing and immune profiling, we find that each state was associated with a combination of mutations in chromatin modifiers, copy-number alterations to TNFAIP3, and T follicular helper cells (Tfh) cell interactions, or primarily by a microenvironment rich in activated T cells. Altogether, these data define FL B cell transcriptional states across a large cohort of patients, contribute to our understanding of FL heterogeneity at the tumor cell level, and provide a foundation for guiding therapeutic intervention.
Assuntos
Linfoma de Células B , Linfoma Folicular , Humanos , Linfoma Folicular/genética , Linfoma Folicular/patologia , Microambiente Tumoral/genética , Linfoma de Células B/genética , Linfócitos B , CromatinaRESUMO
Elevated serum levels of the soluble form of IL-2 receptor α (sIL-2Rα) have been correlated with a poor prognosis in a variety of different types of cancers. However, its biologic relevance remains unclear and controversial. In patients with follicular B-cell non-Hodgkin lymphoma (FL), we observed that serum sIL-2Rα levels were elevated compared with controls and that elevated sIL-2Rα levels before treatment were associated with a poor outcome. To explore the mechanism by which sIL-2Rα may contribute to a poor prognosis in FL, we determined the effects of sIL-2Rα on IL-2 signaling and found that the sIL-2Rα-IL-2 complex promoted T-cell differentiation toward to inhibitory T(reg) cells rather than T(H)1 or T(H)17 cells. Shed by activated T cells that express membrane-bound IL-2Rα, sIL-2Rα further enhanced IL-2-mediated phosphorylation of Stat5 thereby significantly up-regulating Foxp3 expression in CD4(+) T cells. We found that CD4(+) T cells treated with either IL-2 or sIL-2Rα-IL-2 complex, but not with sIL-2Rα alone, inhibited the function of CD8(+) T cells. Taken together, these results indicate that sIL-2Rα actually plays an active biologic role in FL by binding IL-2 and promoting IL-2 signaling rather than depleting IL-2 and blocking its function.
Assuntos
Proliferação de Células , Subunidade alfa de Receptor de Interleucina-2/imunologia , Interleucina-2/imunologia , Linfoma de Células B/imunologia , Linfoma de Células B/mortalidade , Linfoma Folicular/imunologia , Linfoma Folicular/mortalidade , Western Blotting , Estudos de Casos e Controles , Diferenciação Celular , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Fatores de Transcrição Forkhead/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Linfoma de Células B/metabolismo , Linfoma Folicular/metabolismo , Fosforilação , RNA Mensageiro/genética , Receptores de Interleucina-2/imunologia , Receptores de Interleucina-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT5/metabolismo , Taxa de Sobrevida , Células Th1/imunologia , Células Th1/metabolismo , Células Th2/imunologia , Células Th2/metabolismoRESUMO
Waldenström macroglobulinemia (WM) is a rare, lymphoplasmacytic lymphoma characterized by hypersecretion of immunoglobulin M (IgM) protein and tumor infiltration into the bone marrow and lymphatic tissue. Our understanding of the mechanisms driving the development and progression of WM is currently by the shortage of representative cell models available for study. We describe here the establishment of a new WM cell line, MWCL-1. Comprehensive genetic analyses have unequivocally confirmed a clonal relationship between this novel cell line and the founding tumor. MWCL-1 cells exhibit an immunophenotype consistent with a diverse, tumor clone composed of both small B lymphocytes and larger lymphoplasmacytic cells and plasma cells: CD3â», CD19âº, CD20âº, CD27âº, CD38âº, CD49Dâº, CD138âº, cIgMâº, and κâº. Cytogenetic studies identified a monoallelic deletion of 17p13 (TP53) in both the cell line and the primary tumor. Direct DNA resequencing of the remaining copy of TP53 revealed a missense mutation at exon 5 (V143A, GTG>GCG). In accordance with primary WM tumors, MWCL-1 cells retain the ability to secrete high amounts of IgM protein in the absence of an external stimulus. The genetic, immunophenotypic, and biologic data presented here confirm the validity of the MWCL-1 cell line as a representative model of WM.
Assuntos
Linhagem Celular Tumoral/fisiologia , Linhagem Celular Tumoral/ultraestrutura , Macroglobulinemia de Waldenstrom/genética , Macroglobulinemia de Waldenstrom/patologia , Idoso , Hibridização Genômica Comparativa , Impressões Digitais de DNA , Imunofluorescência , Humanos , Imunofenotipagem , Hibridização in Situ Fluorescente , MasculinoRESUMO
Despite extensive research, the specific factor associated with SARS-CoV-2 infection that mediates the life-threatening inflammatory cytokine response in patients with severe COVID-19 remains unidentified. Herein we demonstrate that the virus-encoded Open Reading Frame 8 (ORF8) protein is abundantly secreted as a glycoprotein in vitro and in symptomatic patients with COVID-19. ORF8 specifically binds to the NOD-like receptor family pyrin domain-containing 3 (NLRP3) in CD14+ monocytes to induce inflammasomal cytokine/chemokine responses including IL1ß, IL8, and CCL2. Levels of ORF8 protein in the blood correlate with severity and disease-specific mortality in patients with acute SARS-CoV-2 infection. Furthermore, the ORF8-induced inflammasome response was readily inhibited by the NLRP3 inhibitor MCC950 in vitro. Our study identifies a dominant cause of pathogenesis, its underlying mechanism, and a potential new treatment strategy for severe COVID-19.
RESUMO
PURPOSE: IgM monoclonal gammopathy of undetermined significance (MGUS) and Waldenström macroglobulinemia (WM) represent a disease spectrum with highly varied therapeutic management, ranging from observation to chemoimmunotherapy. The current classification relies solely on clinical features and does not explain the heterogeneity that exists within each of these conditions. Further investigation is warranted to shed light on the biology that may account for the clinical differences. EXPERIMENTAL DESIGN: We used bone marrow (BM) clonal CD19+ and/or CD138+ sorted cells, matched BM supernatant, and peripheral blood serum from 32 patients (7 MGUS, 25 WM) to perform the first multi-omics approach including whole-exome sequencing, RNA sequencing, proteomics, metabolomics, and mass cytometry. RESULTS: We identified three clusters with distinct pathway activation, immune content, metabolomic, and clinical features. Cluster 1 included only patients with WM and was characterized by transcriptional silencing of genes involved in cell cycle and immune response, enrichment of mitochondrial metabolism, infiltration of senescent T effector memory cells, and aggressive clinical behavior. Genetic/structural alterations of TNFAIP3 were distinct events of this cluster. Cluster 2 comprised both MGUS and WM patients with upregulation of inflammatory response, senescence and glycolysis signatures, increased activated T follicular helper and T regulatory cells, and indolent clinical behavior. Cluster 3 also included both MGUS and WM patients and exhibited intermediate features, including proliferative and inflammatory signaling, as well as glycolysis and mitochondrial metabolism. CONCLUSIONS: We have identified three distinct molecular clusters, suggesting a potential biologic classification that may have therapeutic implications.
Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Macroglobulinemia de Waldenstrom , Humanos , Imunoglobulina M , Gamopatia Monoclonal de Significância Indeterminada/genética , Proteínas Adaptadoras de Transdução de Sinal , Transdução de SinaisRESUMO
Monoclonal tumor plasma cells as well as non-terminally differentiated B cells having a clonal relationship to the tumor cells have been detected in the peripheral blood (PB) of some multiple myeloma (MM) patients but rarely in light chain (primary systemic) amyloidosis (AL) patients. Previously, our group found these peripheral clonotypic B cells in three AL patients. Here, we report detailed analysis of a larger cohort of AL patients to validate the prior findings and to investigate the effect of this cell population on clinical outcome. Fourteen AL patients were selected from a clinical prospective trial, and the relationship between immunoglobulin light chain variable gene (V(L)) representation in PB B cells and the clonal population in the bone marrow (BM) was investigated. A clonal relationship was not detected, and the present study provides important insights into the disparity with the earlier data, including clinical history of the patients and methodological analysis.
Assuntos
Amiloidose/imunologia , Subpopulações de Linfócitos B/metabolismo , Cadeias Leves de Imunoglobulina/genética , Região Variável de Imunoglobulina/genética , Mieloma Múltiplo/imunologia , Plasmócitos/metabolismo , Amiloidose/genética , Amiloidose/patologia , Antígenos CD19/metabolismo , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/patologia , Circulação Sanguínea/imunologia , Medula Óssea/imunologia , Medula Óssea/patologia , Ensaios Clínicos Fase III como Assunto , Células Clonais , DNA/análise , Primers do DNA , Humanos , Cadeias Leves de Imunoglobulina/imunologia , Linfopoese , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Plasmócitos/imunologia , Plasmócitos/patologia , Estudos ProspectivosRESUMO
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma, and front line therapies have not improved overall outcomes since the advent of immunochemotherapy. By pairing DNA and gene expression data with clinical response data, we identified a high-risk subset of non-GCB DLBCL patients characterized by genomic alterations and expression signatures capable of sustaining an inflammatory environment. These mutational alterations (PIM1, SPEN, and MYD88 [L265P]) and expression signatures (NF-κB, IRF4, and JAK-STAT engagement) were associated with proliferative signaling, and were found to be enriched in patients treated with RCHOP that experienced unfavorable outcomes. However, patients with these high-risk mutations had more favorable outcomes when the immunomodulatory agent lenalidomide was added to RCHOP (R2CHOP). We are the first to report the genomic validation of a high-risk phenotype with a preferential response towards R2CHOP therapy in non-GCB DLBCL patients. These conclusions could be translated to a clinical setting to identify the ~38% of non-GCB patients that could be considered high-risk, and would benefit from alternative therapies to standard RCHOP based on personalized genomic data.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Ciclofosfamida/administração & dosagem , Doxorrubicina/administração & dosagem , Feminino , Seguimentos , Humanos , Lenalidomida/administração & dosagem , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Prednisona/administração & dosagem , Prognóstico , Estudos Retrospectivos , Rituximab/administração & dosagem , Taxa de Sobrevida , Vincristina/administração & dosagem , Adulto JovemRESUMO
Double/triple hit lymphoma (DH/TH), known as high-grade B-cell lymphoma (HGBL), is an aggressive diffuse large B cell lymphoma (DLBCL), defined as having concurrent MYC, BCL2, and/or BCL6 gene rearrangements. While gene rearrangements represent significant genetic events in cancer, copy number alterations (CNAs) also play an important role, and their contributions to rearrangements have yet to be fully elucidated. Using FISH and high-resolution CNA data, we defined the landscape of concurrent gene rearrangements and copy gains in MYC, BCL2, and BCL6, in a cohort of 479 newly diagnosed DLBCL. We also show that concurrent translocations and copy number alterations, in combinations similar to DH/TH, identify a unique subset of DLBCL, alternative DH/TH, that have survival outcomes similar to DH/TH DLBCL patients.
Assuntos
Dosagem de Genes , Linfoma Difuso de Grandes Células B/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-myc/genética , Feminino , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismoRESUMO
Copy number alterations (CNAs) of 9p24.1 occur frequently in Hodgkin lymphoma, primary mediastinal large B-cell lymphoma (PMBCL), primary central nervous system lymphoma, and primary testicular lymphoma, resulting in overexpression of PD-L1 and sensitivity to PD-1 blockade-based immunotherapy. While 9p24.1 CNA was also reported in diffuse large B-cell lymphoma (DLBCL), little is known about its molecular or clinical significance. In this study, we analyzed the prevalence of 9p24.1 CNA in newly diagnosed DLBCL and examined its association with PD-L1, PD-L2, and JAK2 expression, clinical characteristics, and outcome. We found that 10% of DLBCL cases had CNA of 9p24.1, with 6.5% gains, and 3.5% amplifications. Only the cases with a 9p24.1 amplification had high levels of PD-L1, PD-L2, and JAK2 expression. Gains or amplifications of 9p24.1 were associated with a younger age and the ABC/non-GCB subtype. Compared with DLBCL cases without 9p24.1 CNA, the cases with a 9p24.1 amplification had a trend of better event-free survival. Furthermore, the amplification cases had a gene expression and mutation profile similar to those of PMBCL. Our data suggest that amplification of 9p24.1 identifies a unique subset of DLBCL with clinical and molecular features resembling PMBCL that may be amenable to PD-1 blockade-based immunotherapy.