Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 40(Supplement_1): i337-i346, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940164

RESUMO

MOTIVATION: Exponential growth in sequencing databases has motivated scalable De Bruijn graph-based (DBG) indexing for searching these data, using annotations to label nodes with sample IDs. Low-depth sequencing samples correspond to fragmented subgraphs, complicating finding the long contiguous walks required for alignment queries. Aligners that target single-labelled subgraphs reduce alignment lengths due to fragmentation, leading to low recall for long reads. While some (e.g. label-free) aligners partially overcome fragmentation by combining information from multiple samples, biologically irrelevant combinations in such approaches can inflate the search space or reduce accuracy. RESULTS: We introduce a new scoring model, 'multi-label alignment' (MLA), for annotated DBGs. MLA leverages two new operations: To promote biologically relevant sample combinations, 'Label Change' incorporates more informative global sample similarity into local scores. To improve connectivity, 'Node Length Change' dynamically adjusts the DBG node length during traversal. Our fast, approximate, yet accurate MLA implementation has two key steps: a single-label seed-chain-extend aligner (SCA) and a multi-label chainer (MLC). SCA uses a traditional scoring model adapting recent chaining improvements to assembly graphs and provides a curated pool of alignments. MLC extracts seed anchors from SCAs alignments, produces multi-label chains using MLA scoring, then finally forms multi-label alignments. We show via substantial improvements in taxonomic classification accuracy that MLA produces biologically relevant alignments, decreasing average weighted UniFrac errors by 63.1%-66.8% and covering 45.5%-47.4% (median) more long-read query characters than state-of-the-art aligners. MLAs runtimes are competitive with label-combining alignment and substantially faster than single-label alignment. AVAILABILITY AND IMPLEMENTATION: The data, scripts, and instructions for generating our results are available at https://github.com/ratschlab/mla.


Assuntos
Algoritmos , Alinhamento de Sequência , Alinhamento de Sequência/métodos , Software , Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Bases de Dados Genéticas
2.
Bioinformatics ; 39(39 Suppl 1): i297-i307, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387139

RESUMO

Nanopore sequencers generate electrical raw signals in real-time while sequencing long genomic strands. These raw signals can be analyzed as they are generated, providing an opportunity for real-time genome analysis. An important feature of nanopore sequencing, Read Until, can eject strands from sequencers without fully sequencing them, which provides opportunities to computationally reduce the sequencing time and cost. However, existing works utilizing Read Until either (i) require powerful computational resources that may not be available for portable sequencers or (ii) lack scalability for large genomes, rendering them inaccurate or ineffective. We propose RawHash, the first mechanism that can accurately and efficiently perform real-time analysis of nanopore raw signals for large genomes using a hash-based similarity search. To enable this, RawHash ensures the signals corresponding to the same DNA content lead to the same hash value, regardless of the slight variations in these signals. RawHash achieves an accurate hash-based similarity search via an effective quantization of the raw signals such that signals corresponding to the same DNA content have the same quantized value and, subsequently, the same hash value. We evaluate RawHash on three applications: (i) read mapping, (ii) relative abundance estimation, and (iii) contamination analysis. Our evaluations show that RawHash is the only tool that can provide high accuracy and high throughput for analyzing large genomes in real-time. When compared to the state-of-the-art techniques, UNCALLED and Sigmap, RawHash provides (i) 25.8× and 3.4× better average throughput and (ii) significantly better accuracy for large genomes, respectively. Source code is available at https://github.com/CMU-SAFARI/RawHash.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Genômica , Ploidias , DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa