Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infect Immun ; 92(4): e0008424, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38470113

RESUMO

Camelid-derived, single-domain antibodies (VHHs) have proven to be extremely powerful tools in defining the antigenic landscape of immunologically heterogeneous surface proteins. In this report, we generated a phage-displayed VHH library directed against the candidate Lyme disease vaccine antigen, outer surface protein A (OspA). Two alpacas were immunized with recombinant OspA serotype 1 from Borrelia burgdorferi sensu stricto strain B31, in combination with the canine vaccine RECOMBITEK Lyme containing lipidated OspA. The phage library was subjected to two rounds of affinity enrichment ("panning") against recombinant OspA, yielding 21 unique VHHs within two epitope bins, as determined through competition enzyme linked immunosorbent assays (ELISAs) with a panel of OspA-specific human monoclonal antibodies. Epitope refinement was conducted by hydrogen exchange-mass spectrometry. Six of the monovalent VHHs were expressed as human IgG1-Fc fusion proteins and shown to have functional properties associated with protective human monoclonal antibodies, including B. burgdorferi agglutination, outer membrane damage, and complement-dependent borreliacidal activity. The VHHs displayed unique reactivity profiles with the seven OspA serotypes associated with B. burgdorferi genospecies in the United States and Europe consistent with there being unique epitopes across OspA serotypes that should be considered when designing and evaluating multivalent Lyme disease vaccines.


Assuntos
Lipoproteínas , Doença de Lyme , Anticorpos de Domínio Único , Animais , Cães , Humanos , Vacinas contra Doença de Lyme , Epitopos , Anticorpos Antibacterianos , Vacinas Bacterianas , Proteínas da Membrana Bacteriana Externa , Doença de Lyme/prevenção & controle , Antígenos de Superfície , Anticorpos Monoclonais
2.
Clin Chem ; 70(4): 589-596, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38039096

RESUMO

BACKGROUND: SARS-CoV-2 variants continue to circulate globally, even within highly vaccinated populations. The first-generation SARS-CoV-2 vaccines elicit neutralizing immunoglobin G (IgG) antibodies that prevent severe COVID-19 but induce only weak antibody responses in mucosal tissues. There is increasing recognition that secretory immunoglobin A (SIgA) antibodies in the upper respiratory tract and oral cavity are critical in interrupting virus shedding, transmission, and progression of disease. To fully understand the immune-related factors that influence SARS-CoV-2 dynamics at the population level, it will be necessary to monitor virus-specific IgG and SIgA in systemic and mucosal compartments. CONTENT: Oral fluids and saliva, with appropriate standardized collection methods, constitute a readily accessible biospecimen type from which both systemic and mucosal antibodies can be measured. Serum-derived IgG and immunoglobin A (IgA) are found in gingival crevicular fluids and saliva as the result of transudation, while SIgA, which is produced in response to mucosal infection and vaccination, is actively transported across salivary gland epithelia and present in saliva and passive drool. In this mini-review, we summarize the need for the implementation of standards, highly qualified reagents, and best practices to ensure that clinical science is both rigorous and comparable across laboratories and institutions. We discuss the need for a better understanding of sample stability, collection methods, and other factors that affect measurement outcomes and interlaboratory variability. SUMMARY: The establishment of best practices and clinical laboratory standards for the assessment of SARS-CoV-2 serum and mucosal antibodies in oral fluids is integral to understanding immune-related factors that influence COVID-19 transmission and persistence within populations.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos Antivirais , Vacinação , Imunoglobulina A Secretora , Imunoglobulina G , Imunoglobulina A , Anticorpos Neutralizantes
3.
Biochemistry ; 62(22): 3181-3187, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37903428

RESUMO

Monoclonal antibodies, JB4 and SylH3, neutralize ricin toxin (RT) by inhibiting the galactose-specific lectin activity of the B subunit of the toxin (RTB), which is required for cell attachment and entry. It is not immediately apparent how the antibodies accomplish this feat, considering that RTB consists of two globular domains (D1, D2) each divided into three homologous subdomains (α, ß, γ) with the two functional galactosyl-specific carbohydrate recognition domains (CRDs) situated on opposite poles (subdomains 1α and 2γ). Here, we report the X-ray crystal structures of JB4 and SylH3 Fab fragments bound to RTB in the context of RT. The structures revealed that neither Fab obstructed nor induced detectable conformational alterations in subdomains 1α or 2γ. Rather, JB4 and SylH3 Fabs recognize nearly identical epitopes within an ancillary carbohydrate recognition pocket located in subdomain 1ß. Despite limited amino acid sequence similarity between SylH3 and JB4 Fabs, each paratope inserts a Phe side chain from the heavy (H) chain complementarity determining region (CDR3) into the 1ß CRD pocket, resulting in local aromatic stacking interactions that potentially mimic a ligand interaction. Reconciling the fact that stoichiometric amounts of SylH3 and JB4 are sufficient to disarm RTB's lectin activity without evidence of allostery, we propose that subdomain 1ß functions as a "coreceptor" required to stabilize glycan interactions principally mediated by subdomains 1α and 2γ. Further investigation into subdomain 1ß will yield fundamental insights into the large family of R-type lectins and open novel avenues for countermeasures aimed at preventing toxin uptake into vulnerable tissues and cells.


Assuntos
Ricina , Toxinas Biológicas , Ricina/química , Ricina/metabolismo , Anticorpos Monoclonais , Epitopos , Conformação Molecular , Carboidratos
4.
J Biol Chem ; 298(4): 101742, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182523

RESUMO

During ricin intoxication in mammalian cells, ricin's enzymatic (RTA) and binding (RTB) subunits disassociate in the endoplasmic reticulum. RTA is then translocated into the cytoplasm where, by virtue of its ability to depurinate a conserved residue within the sarcin-ricin loop (SRL) of 28S rRNA, it functions as a ribosome-inactivating protein. It has been proposed that recruitment of RTA to the SRL is facilitated by ribosomal P-stalk proteins, whose C-terminal domains interact with a cavity on RTA normally masked by RTB; however, evidence that this interaction is critical for RTA activity within cells is lacking. Here, we characterized a collection of single-domain antibodies (VHHs) whose epitopes overlap with the P-stalk binding pocket on RTA. The crystal structures of three such VHHs (V9E1, V9F9, and V9B2) in complex with RTA revealed not only occlusion of the ribosomal P-stalk binding pocket but also structural mimicry of C-terminal domain peptides by complementarity-determining region 3. In vitro assays confirmed that these VHHs block RTA-P-stalk peptide interactions and protect ribosomes from depurination. Moreover, when expressed as "intrabodies," these VHHs rendered cells resistant to ricin intoxication. One VHH (V9F6), whose epitope was structurally determined to be immediately adjacent to the P-stalk binding pocket, was unable to neutralize ricin within cells or protect ribosomes from RTA in vitro. These findings are consistent with the recruitment of RTA to the SRL by ribosomal P-stalk proteins as a requisite event in ricin-induced ribosome inactivation.


Assuntos
Proteínas Ribossômicas , Ricina , Anticorpos de Domínio Único , Animais , Epitopos/metabolismo , Mamíferos/metabolismo , Peptídeos/metabolismo , RNA Ribossômico 28S/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Ricina/química , Anticorpos de Domínio Único/metabolismo
5.
Proteins ; 91(11): 1463-1470, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37455569

RESUMO

319-44 is a human monoclonal antibody capable of passively protecting mice against tick-mediated infection with Borreliella burgdorferi, the bacterial genospecies responsible for Lyme disease in North America. In vitro, 319-44 has complement-dependent borreliacidal activity and spirochete agglutinating properties. Here, we report the 2.2 Å-resolution crystal structure of 319-44 Fab fragments in complex with Outer surface protein A (OspA), the ~30 kDa lipoprotein that was the basis of the first-generation Lyme disease vaccine approved in the United States. The 319-44 epitope is focused on OspA ß-strands 19, 20, and 21, and the loops between ß-strands 16-17, 18-19, and 20-21. Contact with loop 20-21 explains competition with LA-2, the murine monoclonal antibody used to estimate serum borreliacidal activities in the first-generation Lyme disease vaccine clinical trials. A high-resolution B-cell epitope map of OspA will accelerate structure-based design of second generation OspA-based vaccines.

6.
Cell Physiol Biochem ; 57(1): 1-14, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695077

RESUMO

BACKGROUND/AIMS: The ribosome-inactivating proteins include the biothreat agent, ricin toxin (RT). When inhaled, RT causes near complete destruction of the lung epithelium coincident with a proinflammatory response that includes TNF family cytokines, which are death-inducing ligands. We previously demonstrated that the combination of RT and TNF-related apoptosis inducing ligand (TRAIL) induces caspase-dependent apoptosis, while RT and TNF-α or RT and Fas ligand (FasL) induces cathepsin-dependent cell death in lung epithelial cells. We hypothesize that airway macrophages constitute a major source of cytokines that drive lung epithelial cell death. METHODS: Here, we show that RT-induced apoptosis of the monocytic cell line, U937, leads to the bystander killing of the lung epithelial cell line, A549. U937 cells were treated with ricin. Following this, A549 cells were treated with supernatants from U937 cells and death was measured by WST-1 viability assay. RESULTS: Upon RT-induced U937 cell death, released RT and FasL contributed to A549 cell death. U937 cells also released nuclear protein HMGB1. The release of RT, FasL, and HMGB1 triggered A549 cell necroptosis, rather than cathepsin-dependent killing observed previously with RT and FasL. Reactive oxygen species (ROS) were produced in A549 cells due to HMGB1 ligation of the receptor for advanced glycation end products (RAGE). CONCLUSION: These findings demonstrate the potential for bystander necroptosis of lung epithelial cells during RT toxicosis which may perpetuate or increase the proinflammatory response.


Assuntos
Proteína HMGB1 , Ricina , Humanos , Ricina/toxicidade , Células U937 , Necroptose , Apoptose , Pulmão/metabolismo , Células Epiteliais/metabolismo , Proteína Ligante Fas , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Catepsinas , Inflamação , Receptor fas
7.
J Allergy Clin Immunol ; 150(3): 523-534, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36075638

RESUMO

Establishment of the gut microbiome during early life is a complex process with lasting implications for an individual's health. Several factors influence microbial assembly; however, breast-feeding is recognized as one of the most influential drivers of gut microbiome composition during infancy, with potential implications for function. Differences in gut microbial communities between breast-fed and formula-fed infants have been consistently observed and are hypothesized to partially mediate the relationships between breast-feeding and decreased risk for numerous communicable and noncommunicable diseases in early life. Despite decades of research on the gut microbiome of breast-fed infants, there are large scientific gaps in understanding how human milk has evolved to support microbial and immune development. This review will summarize the evidence on how breast-feeding broadly affects the composition and function of the early-life gut microbiome and discuss mechanisms by which specific human milk components shape intestinal bacterial colonization, succession, and function.


Assuntos
Microbioma Gastrointestinal , Microbiota , Aleitamento Materno , Feminino , Humanos , Lactente , Fórmulas Infantis , Leite Humano
8.
Infect Immun ; 90(9): e0030622, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36000876

RESUMO

Lyme disease vaccines based on recombinant Outer surface protein A (OspA) elicit protective antibodies that interfere with tick-to-host transmission of the disease-causing spirochete Borreliella burgdorferi. Another hallmark of OspA antisera and certain OspA monoclonal antibodies (MAbs) is their capacity to induce B. burgdorferi agglutination in vitro, a phenomenon first reported more than 30 years ago but never studied in molecular detail. In this report, we demonstrate that transmission-blocking OspA MAbs, individually and in combination, promote dose-dependent and epitope-specific agglutination of B. burgdorferi. Agglutination occurred within minutes and persisted for hours. Spirochetes in the core of the aggregates exhibited evidence of outer membrane (OM) stress, revealed by propidium iodide uptake. The most potent agglutinator was the mouse MAb LA-2, which targets the OspA C terminus (ß-strands 18 to 20). Human MAb 319-44, which also targets the OspA C terminus (ß-strand 20), and 857-2, which targets the OspA central ß-sheet (strands 8 to 10), were less potent agglutinators, while MAb 221-7, which targets ß-strands 10 to 11, had little to no measurable agglutinating activity, even though its affinity for OspA exceeded that of LA-2. Remarkably, monovalent Fab fragments derived from LA-2, and to a lesser degree 319-44, retained the capacity to induce B. burgdorferi aggregation and OM stress, a particularly intriguing observation considering that "LA-2-like" Fabs have been shown to experimentally entrap B. burgdorferi within infected ticks and prevent transmission during feeding to a mammalian host. It is therefore tempting to speculate that B. burgdorferi aggregation triggered by OspA-specific antibodies in vitro may in fact reflect an important biological activity in vivo.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Doença de Lyme , Carrapatos , Aglutinação , Animais , Anticorpos Antibacterianos , Anticorpos Monoclonais , Antígenos de Superfície , Proteínas da Membrana Bacteriana Externa , Vacinas Bacterianas , Epitopos , Humanos , Soros Imunes , Fragmentos Fab das Imunoglobulinas , Lipoproteínas , Vacinas contra Doença de Lyme , Mamíferos , Camundongos , Propídio
9.
Infect Immun ; 90(2): e0051521, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34898253

RESUMO

Typhoid toxin is secreted by the typhoid fever-causing bacterial pathogen Salmonella enterica serovar Typhi and has tropism for immune cells and brain endothelial cells. Here, we generated a camelid single-domain antibody (VHH) library from typhoid toxoid-immunized alpacas and identified 41 VHHs selected on the glycan receptor-binding PltB and nuclease CdtB. VHHs exhibiting potent in vitro neutralizing activities from each sequence-based family were epitope binned via competition enzyme-linked immunosorbent assays (ELISAs), leading to 6 distinct VHHs, 2 anti-PltBs (T2E7 and T2G9), and 4 anti-CdtB VHHs (T4C4, T4C12, T4E5, and T4E8), whose in vivo neutralizing activities and associated toxin-neutralizing mechanisms were investigated. We found that T2E7, T2G9, and T4E5 effectively neutralized typhoid toxin in vivo, as demonstrated by 100% survival of mice administered a lethal dose of typhoid toxin and with little to no typhoid toxin-mediated upper motor function defect. Cumulatively, these results highlight the potential of the compact antibodies to neutralize typhoid toxin by targeting the glycan-binding and/or nuclease subunits.


Assuntos
Camelídeos Americanos , Anticorpos de Domínio Único , Febre Tifoide , Animais , Células Endoteliais , Camundongos , Polissacarídeos , Salmonella typhi , Febre Tifoide/microbiologia
10.
Infect Immun ; 90(6): e0004122, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35579465

RESUMO

Secretory IgA (SIgA) is the most abundant antibody type in intestinal secretions where it contributes to safeguarding the epithelium from invasive pathogens like the Gram-negative bacterium, Salmonella enterica serovar Typhimurium (STm). For example, we recently reported that passive oral administration of the recombinant monoclonal SIgA antibody, Sal4, to mice promotes STm agglutination in the intestinal lumen and restricts bacterial invasion of Peyer's patch tissues. In this report, we sought to recapitulate Sal4-mediated protection against STm in human Enteroids and human intestinal organoids (HIOs) as models to decipher the molecular mechanisms by which antibodies function in mucosal immunity in the human gastrointestinal tract. We confirm that Enteroids and HIO-derived monolayers are permissive to STm infection, dependent on HilD, the master transcriptional regulator of the SPI-I type three secretion system (T3SS). Stimulation of M-like cells in both Enteroids and HIOs by the addition of RANKL further enhanced STm invasion. The apical addition of Sal4 mouse IgA, as well as recombinant human Sal4 dimeric IgA (dIgA) and SIgA resulted a dose-dependent reduction in bacterial invasion. Moreover, basolateral application of Sal4 dIgA to Enteroid and HIO monolayers gave rise to SIgA in the apical compartment via a pathway dependent on expression of the polymeric immunoglobulin receptor (pIgR). The resulting Sal4 SIgA was sufficient to reduce STm invasion of Enteroid and HIO epithelial cell monolayers by ~20-fold. Recombinant Sal4 IgG was also transported in the Enteroid and HIOs, but to a lesser degree and via a pathway dependent on the neonatal Fc receptor (FCGRT). The models described lay the foundation for future studies into detailed mechanisms of IgA and IgG protection against STm and other pathogens.


Assuntos
Imunoglobulina A , Organoides , Animais , Humanos , Imunoglobulina A/metabolismo , Imunoglobulina A Secretora , Imunoglobulina G/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Organoides/metabolismo , Salmonella typhimurium , Transcitose
11.
Infect Immun ; 88(5)2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32122944

RESUMO

The spirochete Borrelia burgdorferisensu lato is the causative agent of Lyme disease (LD). The spirochetes produce the CspZ protein that binds to a complement regulator, factor H (FH). Such binding downregulates activation of host complement to facilitate spirochete evasion of complement killing. However, vaccination with CspZ does not protect against LD infection. In this study, we demonstrated that immunization with CspZ-YA, a CspZ mutant protein with no FH-binding activity, protected mice from infection by several spirochete genotypes introduced via tick feeding. We found that the sera from CspZ-YA-vaccinated mice more efficiently eliminated spirochetes and blocked CspZ FH-binding activity than sera from CspZ-immunized mice. We also found that vaccination with CspZ, but not CspZ-YA, triggered the production of anti-FH antibodies, justifying CspZ-YA as an LD vaccine candidate. The mechanistic and efficacy information derived from this study provides insights into the development of a CspZ-based LD vaccine.


Assuntos
Proteínas de Bactérias/imunologia , Borrelia burgdorferi/imunologia , Fator H do Complemento/imunologia , Doença de Lyme/imunologia , Carrapatos/microbiologia , Animais , Anticorpos/imunologia , Sítios de Ligação/imunologia , Proteínas do Sistema Complemento/imunologia , Feminino , Humanos , Vacinas contra Doença de Lyme/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H
12.
J Biol Chem ; 292(3): 872-883, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27903650

RESUMO

Ricin toxin is a heterodimer consisting of RTA, a ribosome-inactivating protein, and RTB, a lectin that facilitates receptor-mediated uptake into mammalian cells. In previous studies, we demonstrated that toxin-neutralizing antibodies target four spatially distinct hot spots on RTA, which we refer to as epitope clusters I-IV. In this report, we identified and characterized three single domain camelid antibodies (VHH) against cluster II. One of these VHHs, V5E1, ranks as one of the most potent ricin-neutralizing antibodies described to date. We solved the X-ray crystal structures of each of the three VHHs (E1, V1C7, and V5E1) in complex with RTA. V5E1 buries a total of 1,133 Å2 of surface area on RTA and makes primary contacts with α-helix A (residues 18-32), α-helix F (182-194), as well as the F-G loop. V5E1, by virtue of complementarity determining region 3 (CDR3), may also engage with RTB and potentially interfere with the high affinity galactose-recognition element that plays a critical role in toxin attachment to cell surfaces and intracellular trafficking. The two other VHHs, E1 and V1C7, bind epitopes adjacent to V5E1 but display only weak toxin neutralizing activity, thereby providing structural insights into specific residues within cluster II that may be critical contact points for toxin inactivation.


Assuntos
Anticorpos Neutralizantes/química , Ricina/química , Anticorpos de Cadeia Única/química , Animais , Chlorocebus aethiops , Cristalografia por Raios X , Domínios Proteicos , Estrutura Secundária de Proteína , Ricina/antagonistas & inibidores , Células Vero
13.
Proc Natl Acad Sci U S A ; 112(12): 3782-7, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775591

RESUMO

Ricin toxin (RT) is the second most lethal toxin known; it has been designated by the CDC as a select agent. RT is made by the castor bean plant; an estimated 50,000 tons of RT are produced annually as a by-product of castor oil. RT has two subunits, a ribotoxic A chain (RTA) and galactose-binding B chain (RTB). RT binds to all mammalian cells and once internalized, a single RTA catalytically inactivates all of the ribosomes in a cell. Administered as an aerosol, RT causes rapid lung damage and fibrosis followed by death. There are no Food and Drug Administration-approved vaccines and treatments are only effective in the first few hours after exposure. We have developed a recombinant RTA vaccine that has two mutations V76M/Y80A (RiVax). The protein is expressed in Escherichia coli and is nontoxic and immunogenic in mice, rabbits, and humans. When vaccinated mice are challenged with injected, aerosolized, or orally administered (gavaged) RT, they are completely protected. We have now developed a thermostable, aluminum-adjuvant-containing formulation of RiVax and tested it in rhesus macaques. After three injections, the animals developed antibodies that completely protected them from a lethal dose of aerosolized RT. These antibodies neutralized RT and competed to varying degrees with a panel of neutralizing and nonneutralizing mouse monoclonal antibodies known to recognize specific epitopes on native RTA. The resulting antibody competition profile could represent an immunologic signature of protection. Importantly, the same signature was observed using sera from RiVax-immunized humans.


Assuntos
Anticorpos Neutralizantes/química , Epitopos/química , Ricina/química , Vacinas/química , Aerossóis , Animais , Anticorpos Monoclonais/química , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/química , Humanos , Imunoglobulina G/química , Pulmão/patologia , Macaca mulatta , Camundongos , Conformação Molecular , Temperatura
14.
Proteins ; 85(11): 1994-2008, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28718923

RESUMO

In this report we investigated, within a group of closely related single domain camelid antibodies (VH Hs), the relationship between binding affinity and neutralizing activity as it pertains to ricin, a fast-acting toxin and biothreat agent. The V1C7-like VH Hs (V1C7, V2B9, V2E8, and V5C1) are similar in amino acid sequence, but differ in their binding affinities and toxin-neutralizing activities. Using the X-ray crystal structure of V1C7 in complex with ricin's enzymatic subunit (RTA) as a template, Rosetta-based homology modeling coupled with energetic decomposition led us to predict that a single pairwise interaction between Arg29 on V5C1 and Glu67 on RTA was responsible for the difference in ricin toxin binding affinity between V1C7, a weak neutralizer, and V5C1, a moderate neutralizer. This prediction was borne out experimentally: substitution of Arg for Gly at position 29 enhanced V1C7's binding affinity for ricin, whereas the reverse (ie, Gly for Arg at position 29) diminished V5C1's binding affinity by >10 fold. As expected, the V5C1R29G mutant was largely devoid of toxin-neutralizing activity (TNA). However, the TNA of the V1C7G29R mutant was not correspondingly improved, indicating that in the V1C7 family binding affinity alone does not account for differences in antibody function. V1C7 and V5C1, as well as their respective point mutants, recognized indistinguishable epitopes on RTA, at least at the level of sensitivity afforded by hydrogen-deuterium mass spectrometry. The results of this study have implications for engineering therapeutic antibodies because they demonstrate that even subtle differences in epitope specificity can account for important differences in antibody function.


Assuntos
Anticorpos Neutralizantes , Mapeamento de Epitopos/métodos , Modelos Moleculares , Engenharia de Proteínas/métodos , Ricina , Anticorpos de Domínio Único , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , Camelidae , Ligação Proteica , Ricina/química , Ricina/isolamento & purificação , Ricina/metabolismo , Alinhamento de Sequência , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/metabolismo
15.
J Biol Chem ; 290(46): 27880-9, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26396190

RESUMO

Novel antibody constructs consisting of two or more different camelid heavy-chain only antibodies (VHHs) joined via peptide linkers have proven to have potent toxin-neutralizing activity in vivo against Shiga, botulinum, Clostridium difficile, anthrax, and ricin toxins. However, the mechanisms by which these so-called bispecific VHH heterodimers promote toxin neutralization remain poorly understood. In the current study we produced a new collection of ricin-specific VHH heterodimers, as well as VHH homodimers, and characterized them for their ability neutralize ricin in vitro and in vivo. We demonstrate that the VHH heterodimers, but not homodimers were able to completely protect mice against ricin challenge, even though the two classes of antibodies (heterodimers and homodimers) had virtually identical affinities for ricin holotoxin and similar IC50 values in a Vero cell cytotoxicity assay. The VHH heterodimers did differ from the homodimers in their ability to promote toxin aggregation in solution, as revealed through analytical ultracentrifugation. Moreover, the VHH heterodimers that were most effective at promoting ricin aggregation in solution were also the most effective at blocking ricin attachment to cell surfaces. Collectively, these data suggest that heterodimeric VHH-based neutralizing agents may function through the formation of antibody-toxin complexes that are impaired in their ability to access host cell receptors.


Assuntos
Anticorpos Neutralizantes/química , Cadeias Pesadas de Imunoglobulinas/química , Ricina/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/imunologia , Camelídeos Americanos/imunologia , Chlorocebus aethiops , Feminino , Cadeias Pesadas de Imunoglobulinas/imunologia , Concentração Inibidora 50 , Camundongos , Camundongos Endogâmicos BALB C , Engenharia de Proteínas , Multimerização Proteica , Ricina/imunologia , Ultracentrifugação , Células Vero
16.
Proteins ; 84(8): 1162-72, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27159829

RESUMO

In this report, we describe the X-ray crystal structures of two single domain camelid antibodies (VH H), F5 and F8, each in complex with ricin toxin's enzymatic subunit (RTA). F5 has potent toxin-neutralizing activity, while F8 has weak neutralizing activity. F5 buried a total of 1760 Å(2) in complex with RTA and made contact with three prominent secondary structural elements: α-helix B (Residues 98-106), ß-strand h (Residues 113-117), and the C-terminus of α-helix D (Residues 154-156). F8 buried 1103 Å(2) in complex with RTA that was centered primarily on ß-strand h. As such, the structural epitope of F8 is essentially nested within that of F5. All three of the F5 complementarity determining regions CDRs were involved in RTA contact, whereas F8 interactions were almost entirely mediated by CDR3, which essentially formed a seventh ß-strand within RTA's centrally located ß-sheet. A comparison of the two structures reported here to several previously reported (RTA-VH H) structures identifies putative contact sites on RTA, particularly α-helix B, associated with potent toxin-neutralizing activity. This information has implications for rational design of RTA-based subunit vaccines for biodefense. Proteins 2016; 84:1162-1172. © 2016 Wiley Periodicals, Inc.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Epitopos de Linfócito B/química , Subunidades Proteicas/química , Ricina/química , Anticorpos de Cadeia Única/química , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/farmacologia , Linfócitos B/química , Linfócitos B/imunologia , Sítios de Ligação de Anticorpos , Camelídeos Americanos , Clonagem Molecular , Regiões Determinantes de Complementaridade/química , Cristalografia por Raios X , Epitopos de Linfócito B/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Ricina/antagonistas & inibidores , Ricina/imunologia , Alinhamento de Sequência , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia , Relação Estrutura-Atividade
17.
Microsc Microanal ; 22(6): 1113-1119, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27804914

RESUMO

Retrograde transport is a process in which proteins are trafficked from the plasma membrane and endosomes to biosynthetic and secretory organelles, namely the Golgi apparatus and endoplasmic reticulum (ER). A number of plant and bacterial toxins, including cholera toxin and ricin toxin, exploit retrograde transport to gain entry into host cells, although the specifics of this process have remained difficult to probe by laser scanning confocal microscopy (LSCM). Here we demonstrate the use of super-resolution and live-cell imaging [stimulated emission depletion (STED)] to visualize exogenously applied ricin toxin within the ER. The improved resolution obtained by STED, as compared with LSCM (0.09 versus 0.19 µm), provides a more accurate determination of the amount of ricin that had trafficked to the ER.


Assuntos
Retículo Endoplasmático/química , Microscopia Óptica não Linear , Animais , Retículo Endoplasmático/metabolismo , Transporte Proteico
18.
Infect Immun ; 83(4): 1674-83, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25667263

RESUMO

2D6 is a dimeric monoclonal immunoglobulin A (IgA) specific for the nonreducing terminal residue of Ogawa O-polysaccharide (OPS) of Vibrio cholerae. It was previously demonstrated that 2D6 IgA is sufficient to passively protect suckling mice from oral challenge with virulent V. cholerae O395. In this study, we sought to define the mechanism by which 2D6 IgA antibody protects the intestinal epithelium from V. cholerae infection. In a mouse ligated-ileal-loop assay, 2D6 IgA promoted V. cholerae agglutination in the intestinal lumen and limited the ability of the bacteria to associate with the epithelium, particularly within the crypt regions. In vitro fluorescence digital video microscopy analysis of antibody-treated V. cholerae in liquid medium revealed that 2D6 IgA not only induced the rapid (5- to 10-min) onset of agglutination but was an equally potent inhibitor of bacterial motility. Scanning electron microscopy showed that 2D6 IgA promoted flagellum-flagellum cross-linking, as well as flagellar entanglement with bacterial bodies, suggesting that motility arrest may be a consequence of flagellar tethering. However, monovalent 2D6 Fab fragments also inhibited V. cholerae motility, demonstrating that antibody-mediated agglutination and motility arrest are separate phenomena. While 2D6 IgA is neither bactericidal nor bacteriostatic, exposure of V. cholerae to 2D6 IgA (or Fab fragments) resulted in a 5-fold increase in surface-associated blebs, as well an onset of a wrinkled surface morphotype. We propose that the protective immunity conferred by 2D6 IgA is the result of multifactorial effects on V. cholerae, including agglutination, motility arrest, and possibly outer membrane stress.


Assuntos
Anticorpos Monoclonais/farmacologia , Cólera/imunologia , Imunoglobulina A/imunologia , Polissacarídeos Bacterianos/imunologia , Vibrio cholerae/imunologia , Aglutinação/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Aderência Bacteriana/imunologia , Cólera/microbiologia , Feminino , Flagelos/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Endogâmicos BALB C
19.
J Biol Chem ; 288(51): 36538-47, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24202178

RESUMO

In an effort to engineer countermeasures for the category B toxin ricin, we produced and characterized a collection of epitopic tagged, heavy chain-only antibody VH domains (VHHs) specific for the ricin enzymatic (RTA) and binding (RTB) subunits. Among the 20 unique ricin-specific VHHs we identified, six had toxin-neutralizing activity: five specific for RTA and one specific for RTB. Three neutralizing RTA-specific VHHs were each linked via a short peptide spacer to the sole neutralizing anti-RTB VHH to create VHH "heterodimers." As compared with equimolar concentrations of their respective monovalent monomers, all three VHH heterodimers had higher affinities for ricin and, in the case of heterodimer D10/B7, a 6-fold increase in in vitro toxin-neutralizing activity. When passively administered to mice at a 4:1 heterodimer:toxin ratio, D10/B7 conferred 100% survival in response to a 10 × LD50 ricin challenge, whereas a 2:1 heterodimer:toxin ratio conferred 20% survival. However, complete survival was achievable when the low dose of D10/B7 was combined with an IgG1 anti-epitopic tag monoclonal antibody, possibly because decorating the toxin with up to four IgGs promoted serum clearance. The two additional ricin-specific heterodimers, when tested in vivo, provided equal or greater passive protection than D10/B7, thereby warranting further investigation of all three heterodimers as possible therapeutics.


Assuntos
Camelídeos Americanos/imunologia , Imunização Passiva , Ricina/imunologia , Anticorpos de Domínio Único/imunologia , Sequência de Aminoácidos , Animais , Afinidade de Anticorpos , Sítios de Ligação de Anticorpos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Engenharia de Proteínas , Multimerização Proteica , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/isolamento & purificação
20.
Microsc Microanal ; 20(1): 198-205, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24182520

RESUMO

Peyer's patches, macroscopic aggregates of lymphoid follicles present throughout the small intestines of humans and other mammals, are considered the gateway through which luminal dietary antigens and microbes are sampled by the mucosal immune system. The cellular make-up of Peyer's patch lymphoid follicles is not only complex, but highly dynamic, as there are at least four major cell types that are known to migrate in response to antigenic stimulation. In an effort to capture the complexity and dynamic nature of this specialized tissue, here we report the three-dimensional (3D) reconstruction of immunofluorescent-labeled mouse Peyer's patch cryosections. The technology that enabled the stacking and linear blending of serial cryosections was a novel macro for Fiji, the open source image-processing package based on ImageJ. By simultaneously labeling cryosections for surface markers CD45R, CD3, and CD11c, we provide a 3D image as well as quantitative measures of B-cell, T-cell, and dendritic cell populations at steady state and following exposure to the mucosal adjuvant cholera toxin.


Assuntos
Histocitoquímica/métodos , Imageamento Tridimensional/métodos , Nódulos Linfáticos Agregados/citologia , Animais , Toxina da Cólera , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Intestino Delgado/citologia , Camundongos , Camundongos Endogâmicos BALB C , Nódulos Linfáticos Agregados/química , Nódulos Linfáticos Agregados/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa