Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Labelled Comp Radiopharm ; 62(14): 925-932, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31339589

RESUMO

An 18 F-labelled human epidermal growth factor receptor (HER2) receptor binding radiotracer is a potential tool to non-invasively identify HER2 positive tumour lesions in subjects with recurrent metastatic breast cancer. Having explored the manual radiochemistry to conjugate the Affibody molecule ZHER2:2891 with [18 F]4-fluorobenzaldehyde, we have developed and optimised a full protocol for the automated GE FASTlab synthesiser. Our chemometric model predicted the best radiochemical purity for a short conjugation time (2.8 minutes), a low temperature (65°C), and a medium Affibody molecule precursor amount (5.5 mg). Under these optimised conditions, [18 F]GE-226 was produced after solid-phase extraction purification with activity yield of 30% ± 7 (n = 18) and a radiochemical purity of 94% ± 2 (n = 18). The synthesis and purification was complete after 43 minutes and provided apparent molar activities of 12 to 30 GBq/µmol (n = 12) at the end of synthesis.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Radioisótopos de Flúor/química , Receptor ErbB-2/imunologia , Técnicas de Química Sintética , Radioquímica
2.
J Labelled Comp Radiopharm ; 57(1): 42-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24448744

RESUMO

The level of the translocator protein (TSPO) increases dramatically in microglial cells when the cells are activated in response to neuronal injury and insult. The radiotracer [(18) F]GE-180 binds selectively and with high affinity to TSPO and can therefore be used to measure neuroinflammation in a variety of disease states. An optimized, automated synthesis of [(18) F]GE-180 has been developed for the GE FASTlab™ synthesizer. The entire process takes place on the single-use cassette. The radiolabelling is performed by nucleophilic fluorination of the S- enantiomer mesylate precursor. The crude product is purified post-radiolabelling using two solid-phase extraction cartridges integrated on the cassette. Experimental design and multivariate data analysis were used to assess the robustness, and critical steps were optimized with respect to efficacy and quality. The average radiochemical yield is 48% (RSD 6%, non-decay corrected), and the synthesis time including purification is approximately 43 min. The radiochemical purity is ≥95% for radioactive concentration ≤1100 MBq/mL. The total amount of precursor-related chemical impurities is 1-2 µg/mL. The use of solid-phase extraction purification results in a robust GMP compliant process with a product of high chemical and radiochemical purity and consistent performance across positron emission tomography (PET) centers.


Assuntos
Carbazóis/síntese química , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Radioquímica/normas , Receptores de GABA/metabolismo , Automação , Carbazóis/química , Carbazóis/isolamento & purificação , Técnicas de Química Sintética , Marcação por Isótopo , Controle de Qualidade , Traçadores Radioativos , Extração em Fase Sólida
3.
J Biol Chem ; 287(1): 233-244, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22057278

RESUMO

The cytotoxic activity of 10 analogs of the idealized amphipathic helical 21-mer peptide (KAAKKAA)3, where three of the Ala residues at different positions have been replaced with Trp residues, has been investigated. The peptide's cytotoxic activity was found to be markedly dependent upon the position of the Trp residues within the hydrophobic sector of an idealized α-helix. The peptides with Trp residues located opposite the cationic sector displayed no antitumor activity, whereas those peptides with two or three Trp residues located adjacent to the cationic sector exhibited high cytotoxic activity when tested against three different cancer cell lines. Dye release experiments revealed that in contrast to the peptides with Trp residues located opposite the cationic sector, the peptides with Trp residues located adjacent to the cationic sector induced a strong permeabilizing activity from liposomes composed of a mixture of zwitterionic phosphatidylcholine and negatively charged phosphatidylserine (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS)) (2:1) but not from liposomes composed of zwitterionic phosphatidylcholine, POPC. Fluorescence blue shift and quenching experiments revealed that Trp residues inserted deeper into the hydrophobic environment of POPC/POPS liposomes for peptides with high cytotoxic activity. Through circular dichroism studies, a correlation between the cytotoxic activity and the α-helical propensity was established. Structural studies of one inactive and two active peptides in the presence of micelles using NMR spectroscopy showed that only the active peptides adopted highly coiled to helical structures when bound to a membrane surface.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Triptofano , Sequência de Aminoácidos , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/síntese química , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
4.
Bioorg Med Chem Lett ; 23(8): 2368-72, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23489633

RESUMO

A series of novel TSPO ligands based on the tetracyclic class of translocator protein (TSPO) ligands first described by Okubo et al. was synthesised and evaluated as potential positron emitting tomography (PET) ligands for imaging TPSO in vivo. Fluorine-18 labelling of the molecules was achieved using direct radiolabelling or synthon based labelling approaches. Several of the ligands prepared have promising profiles as potential TSPO PET imaging ligands.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA/análise , Receptores de GABA/metabolismo , Animais , Radioisótopos de Flúor/química , Marcação por Isótopo/métodos , Ligantes , Transporte Proteico , Ratos , Receptores de GABA/química , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 22(3): 1308-13, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22244939

RESUMO

A series of tricyclic compounds have been synthesised and evaluated in vitro for affinity against Translocator protein 18 kDa (TSPO) and for preferred imaging properties. The most promising of the compounds were radiolabelled and evaluated in vivo to determine biodistribution and specificity for high expressing TSPO regions. Metabolite profiling in brain and plasma was also investigated. Evaluation in an autoradiography model of neuroinflammation was also carried out for the best compound, 12a ([(18)F]GE-180).


Assuntos
Carbazóis/química , Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Receptores de GABA/metabolismo , Animais , Carbazóis/metabolismo , Radioisótopos de Flúor/química , Radioisótopos de Flúor/metabolismo , Ligantes , Estrutura Molecular , Miocárdio/metabolismo , Ratos , Ratos Sprague-Dawley
6.
J Mol Biol ; 334(4): 811-21, 2003 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-14636605

RESUMO

Malate dehydrogenase (MDH) from the moderately thermophilic bacterium Chloroflexus aurantiacus (CaMDH) is a tetrameric enzyme, while MDHs from mesophilic organisms usually are dimers. To investigate the potential contribution of the extra dimer-dimer interface in CaMDH with respect to thermal stability, we have engineered an intersubunit disulfide bridge designed to strengthen dimer-dimer interactions. The resulting mutant (T187C, containing two 187-187 disulfide bridges in the tetramer) showed a 200-fold increase in half-life at 75 degrees C and an increase of 15 deg. C in apparent melting temperature compared to the wild-type. The crystal structure of the mutant (solved at 1.75 A resolution) was essentially identical with that of the wild-type, with the exception of the added inter-dimer disulfide bridge and the loss of an aromatic intra-dimer contact. Remarkably, the mutant and the wild-type had similar temperature optima and activities at their temperature optima, thus providing a clear case of uncoupling of thermal stability and thermoactivity. The results show that tetramerization may contribute to MDH stability to an extent that depends strongly on the number of stabilizing interactions in the dimer-dimer interface.


Assuntos
Proteínas de Bactérias/química , Dissulfetos , Malato Desidrogenase/química , Estrutura Quaternária de Proteína , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Dimerização , Estabilidade Enzimática , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Desnaturação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Temperatura
7.
J Mol Biol ; 341(5): 1215-26, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15321717

RESUMO

The stability of tetrameric malate dehydrogenase from the green phototrophic bacterium Chloroflexus aurantiacus (CaMDH) is at least in part determined by electrostatic interactions at the dimer-dimer interface. Since previous studies had indicated that the thermal stability of CaMDH becomes lower with increasing pH, attempts were made to increase the stability by removal of (excess) negative charge at the dimer-dimer interface. Mutation of Glu165 to Gln or Lys yielded a dramatic increase in thermal stability at pH 7.5 (+23.6 -- + 23.9 degrees C increase in apparent t(m)) and a more moderate increase at pH 4.4 (+4.6 -- + 5.4 degrees C). The drastically increased stability at neutral pH was achieved without forfeiture of catalytic performance at low temperatures. The crystal structures of the two mutants showed only minor structural changes close to the mutated residues, and indicated that the observed stability effects are solely due to subtle changes in the complex network of electrostatic interactions in the dimer-dimer interface. Both mutations reduced the concentration dependency of thermal stability, suggesting that the oligomeric structure had been reinforced. Interestingly, the two mutations had similar effects on stability, despite the charge difference between the introduced side-chains. Together with the loss of concentration dependency, this may indicate that both E165Q and E165K stabilize CaMDH to such an extent that disruption of the inter-dimer electrostatic network around residue 165 no longer limits kinetic thermal stability.


Assuntos
Proteínas de Bactérias , Malato Desidrogenase , Mutação Puntual , Estrutura Quaternária de Proteína , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chloroflexus/enzimologia , Cristalografia por Raios X , Dimerização , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Malato Desidrogenase/química , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
8.
Nucl Med Biol ; 42(9): 711-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26072270

RESUMO

INTRODUCTION: The tricyclic indole compound, [(18)F]GE-180 has been previously identified as a promising positron emission tomography (PET) imaging agent of the translocator protein (TSPO) with the potential to aid in the diagnosis, prognosis and therapy monitoring of degenerative neuroinflammatory conditions such as multiple sclerosis. [(18)F]GE-180 was first identified and evaluated as a racemate, but subsequent evaluations of the resolved enantiomers have shown that the S-enantiomer has a higher affinity for TSPO and an improved in vivo biodistribution performance, in terms of higher uptake in specific brain regions and good clearance (as described previously). Here we describe the additional biological evaluations carried out to confirm the improved performance of the S-enantiomer and including experiments which have demonstrated the stability of the chiral centre to chemical and biological factors. MATERIALS AND METHODS: GE-180 and the corresponding radiolabelling precursor were separated into single enantiomers using semi-preparative chiral supercritical fluid chromatography (SFC). A detailed comparison of the individual enantiomers and the racemate was carried out in a number of biological studies. TSPO binding affinity was assessed using a radioligand binding assay. Incubation with rat hepatic S9 fractions was used to monitor metabolic stability. In vivo biodistribution studies up to 60 min post injection (PI) in naïve rats were carried out to monitor uptake and clearance. Achiral and chiral in vivo metabolite detection methods were developed to assess the presence of metabolite/s in plasma and brain samples, with the chiral method also determining potential racemisation at the chiral centre. RESULTS: Evaluation of the chiral stability of the two enantiomers to metabolism by rat S9 fractions, showed no racemisation of enantiomers. There were notable differences in the biodistribution between the racemate and the R- and S-enantiomers. All compounds had similar initial brain uptake between 0.99 and 1.01% injected dose (id) at 2 min PI, with S-[(18)F]GE-180 showing significantly greater retention than the R-enantiomer at 10 and 30 min PI (P<0.05). S-[(18)F]GE-180 uptake to the TSPO-expressing olfactory bulbs was 0.45% id (SD ± 0.17) at 30 min PI in comparison to RS-[(18)F]GE-180 or R-[(18)F]GE-180 levels of 0.41% id ± 0.09 and 0.23% id ± 0.02 respectively, at the same timepoint (P > 0.05). The signal-to-noise ratio (ratio olfactory bulb to striata binding) were similar for both RS-[(18)F]GE-180 and S-[(18)F]GE-180 (3.2 and 3.4 respectively). Initial uptake to the lungs (an organ with high TSPO expression) was more than 3-fold greater with S-[(18)F]GE-180 than R-[(18)F]GE-180, and significantly higher at 10 and 30 min PI (P < 0.05). Furthermore lung uptake of S-[(18)F]GE-180 at 2 and 10 min PI was also significant when compared to the racemate (P < 0.05). The majority of the radioactivity in the rat brain following administration of RS-[(18)F]GE-180 or S-[(18)F]GE-180 was due to the presence of the parent compound (91% ± 1.5 and 94% ± 2.0 of total radioactivity at 60 min PI respectively). In contrast at 60 min PI for the plasma samples, the parent compounds accounted for only 28% ± 1.2 and 21% ± 4.6 of total radioactivity for RS-[(18)F]GE-180 and S-[(18)F]GE-180 respectively. Chiral assessment confirmed that the S-enantiomer was chirally stable in vivo, with no stereochemical conversion in brain and plasma samples up to 60 min PI. CONCLUSIONS: Developing racemic radiotracers, as for racemic therapeutics, is a considerable challenge due to differences of the enantiomers in pharmacokinetics, efficacy and potential toxicity. We have shown that the enantiomers of the promising racemic PET ligand [(18)F]GE-180 do not share identical performance, with S-[(18)F]GE-180 demonstrating higher TSPO affinity, higher brain uptake and better retention to the high TSPO-expressing lungs. Furthermore, S-[(18)F]GE-180 has also been shown to be enantiomerically stable in vivo, with no observed conversation of the eutomer to the distomer. As a single enantiomer, S-[(18)F]GE-180 retains the beneficial characteristics of the racemate and is a promising imaging agent for imaging neuroinflammation in vivo.


Assuntos
Encéfalo/metabolismo , Carbazóis/química , Carbazóis/farmacocinética , Proteínas de Transporte/metabolismo , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA-A/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Meios de Contraste/química , Meios de Contraste/farmacocinética , Estabilidade de Medicamentos , Humanos , Marcação por Isótopo , Masculino , Teste de Materiais , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estereoisomerismo , Relação Estrutura-Atividade , Distribuição Tecidual
9.
FEBS Lett ; 553(3): 423-6, 2003 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-14572663

RESUMO

Malate dehydrogenase (MDH) from the moderately thermophilic bacterium Chloroflexus aurantiacus (CaMDH) is a tetrameric enzyme, while MDHs from mesophilic bacteria usually are dimers. Using site-directed mutagenesis, we show here that a network of electrostatic interactions across the extra dimer-dimer interface in CaMDH is important for thermal stability and oligomeric integrity. Stability effects of single point mutations (E25Q, E25K, D56N, D56K) varied from -1.2 degrees C to -26.8 degrees C, and depended strongly on pH. Gel-filtration experiments indicated that the 26.8 degrees C loss in stability observed for the D56K mutant at low pH was accompanied by a shift towards a lower oligomerization state.


Assuntos
Proteínas de Bactérias/química , Malato Desidrogenase/química , Substituição de Aminoácidos , Chlorobi/enzimologia , Cromatografia em Gel , Dimerização , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Desnaturação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Eletricidade Estática , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa