Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(31): 14013-14021, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39041953

RESUMO

Large amounts of wastewater containing low-concentration (<10 ppm) rare-earth ions (REIs) are discharged annually in China's rare-earth mining and processing industry, resulting in severe environmental pollution and economic losses. Hence, achieving efficient selective recovery of low-concentration REIs from REIs-containing wastewater is essential for environmental protection and resource recovery. In this study, a pseudocapacitance system was designed for highly efficient capacitive selective recovery of REIs from wastewater using the titanium dioxide/P/C (TiO2/P/C) composite electrode, which exhibited over 99% recovery efficiency for REIs, such as Eu3+, Dy3+, Tb3+, and Lu3+ in mixed solution. This system maintained high efficiency and more than 90 times the enrichment concentration of REIs even after 100 cycles. Ti4+ of TiO2 was reduced to Ti3+ of Ti3O5 under forward voltage in the system, which trapped the electrons of phosphorus site and caused it to be oxidized to phosphate with a strong affinity for REIs, thus improving the selectivity of REIs. Under reverse voltage, Ti3O5 was oxidized to TiO2, which transferred electrons to phosphate and transformed to the phosphorus site, resulting in the desorption and enrichment of REIs and the regeneration of the electrode. This study provides a promising method for the efficient recovery of REIs from wastewater.


Assuntos
Eletrodos , Metais Terras Raras , Fósforo , Titânio , Águas Residuárias , Águas Residuárias/química , Metais Terras Raras/química , Fósforo/química , Adsorção , Titânio/química , Poluentes Químicos da Água/química , Íons
2.
Environ Sci Technol ; 55(11): 7665-7673, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33983021

RESUMO

The pollution of toxic heavy metals is becoming an increasingly important issue in environmental remediation because these metals are harmful to the ecological environment and human health. Highly efficient selective removal of heavy metal ions is a huge challenge for wastewater purification. Here, highly efficient selective capacitive removal (SCR) of heavy metal ions from complex wastewater over Lewis base sites of S-doped Fe-N-C cathodes was originally performed via an electro-adsorption process. The SCR efficiency of heavy metal ions can reach 99% in a binary mixed solution [NaCl (100 ppm) and metal nitrate (10 ppm)]. Even the SCR efficiency of heavy metal ions in a mixed solution containing NaCl (100 ppm) and multicomponent metal nitrates (10 ppm for each) can approach 99%. Meanwhile, the electrode also demonstrated excellent cycle performance. It has been demonstrated that the doping of S can not only enhance the activity of Fe-N sites and improve the removal ability of heavy metal ions but also combine with heavy metal ions by forming covalent bonds of S- clusters on Lewis bases. This work demonstrates a prospective way for the selective removal of heavy metal ions in wastewater.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Eletrodos , Humanos , Íons , Bases de Lewis , Estudos Prospectivos , Águas Residuárias , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 55(1): 730-737, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33289377

RESUMO

Water pollution has become an environmental hazard. Diverse metal cations exist in wastewater; lead is the most common heavy metal pollutant among them. Selective removal of highly toxic and ultradiluted lead ions from wastewater is a major challenge for water purification. Here, selective capacitive removal (SCR) of lead ions from wastewater over redox-active molybdenum dioxide/carbon (MoO2/C) electrodes was developed by an environment-friendly asymmetric capacitive deionization (CDI) method. The MoO2/C spheres act as cathodes of an asymmetric CDI device and effectively reduce the concentration of Pb2+ from 50 ppm to <0.21 ppb. Moreover, the SCR efficiency of lead ions over redox-active MoO2/C electrodes is >99% in mixtures of 100 ppm Pb(NO3)2 and 100 ppm NaCl solutions. In addition, the electrodes exhibit high regeneration performance in mixtures of NaCl and Pb(NO3)2 and high SCR efficiency for lead ions from mixtures of heavy metal ions. The tetrahedral structure of the [MoO4] lattice is shown to be more favorable for the intercalation of lead ions. In situ Raman spectroscopy further shows that the transition of the crystal interface between [MoO6] and [MoO4] cluster lattice could be electrochemically controlled during SCR. Therefore, this study provides a new direction for the SCR of lead ions from wastewater.


Assuntos
Águas Residuárias , Purificação da Água , Eletrodos , Chumbo , Oxirredução
4.
Environ Sci Technol ; 55(5): 3333-3340, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33605148

RESUMO

Heavy metals widely exist in wastewater, which is a serious threat to human health or water environment. Highly efficient removal of heavy metal ions from wastewater is a major challenge to wastewater treatment. In this work, capacitive removal of heavy metal ions from wastewater via an electro-adsorption and electro-reaction coupling process was originally demonstrated. The removal efficiency of heavy metal ions in the binary-component solutions containing metal nitrate (10 mg/L) and NaCl (100 mg/L) can reach 99%. Even the removal efficiency of heavy metal ions can be close to 99% in the multi-component solution containing all the seven metal nitrates (10 mg/L for each) and 100 mg/L NaCl. Meanwhile, the electro-adsorption and electro-reaction coupling process maintained excellent regeneration ability even after 20 cycles. Furthermore, the heavy metal ions removal mechanism was proven to be the pseudocapacitive intercalation of heavy metal ions into the layered structure of the employed W18O49/graphene in the electro-adsorption and electro-reaction coupling process. This work demonstrates great potential for general applicability to wastewater treatment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Humanos , Íons , Águas Residuárias
5.
J Hazard Mater ; 443(Pt A): 130150, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36257107

RESUMO

Cr(VI) has been observed to be released from Cr(III)-bearing natural sources or residues when they are found alongside manganese and manganese oxides. However, relevant mechanism studies normally ignore the effect of simulated solar irradiation on this oxidation reaction. Therefore, we investigated the photochemical reaction between Cr(OH)3 and δ-MnO2, the common species of chromium and manganese oxide found in the environment. At pH 11, the oxidation of Cr(OH)3 by δ-MnO2 was accelerated under simulated solar irradiation, which had an oxidation rate 2.7-fold greater than that in the dark condition. Further investigation revealed that δ-MnO2, an n-type semiconductor with a 2.7 eV band gap, can be excited by light with wavelengths < 459 nm and produce photogenic electrons and holes. These photo-induced carriers reacted with surrounding molecules to form free radicals and participate the redox reactions. Free-radical quenching experiments indicated that hydroxyl radicals (•OH) are the main oxidants of Cr(III) under simulated solar irradiation. This work provides new mechanistic insight into the oxidation of Cr(III) to Cr(VI), which may help clarifying the environmental fate of Cr and the potential solar-triggered release of Cr(VI).

6.
J Hazard Mater ; 424(Pt C): 127585, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34753651

RESUMO

High-level arsenic-containing wastewater (HAW) causes serious environmental pollution. Chemical precipitation is the most widely used technology for treating HAW. However, chemical precipitation generates huge amounts of hazardous solid wastes, which leads to secondary pollution. In this work, an efficient method, producing no secondary pollution was developed for one-step complete removal of As(V) from HAW using a hazardous solid waste namely arsenic-bearing gypsum (ABG). After the treatment, ABG was transformed into highly stable and environment-friendly mineral Johnbaumite. Meanwhile, the arsenic concentration in the wastewater decreased from 10,000 mg L-1 to 0.22 mg L-1 under optimized hydrothermal conditions (ABG dosage of 50 g L-1, solution pH of 13.5, temperature of 150 °C for 12 h). The mechanism mainly included the following processes: (i) The phase transformation of ABG resulted in the release of calcium and hydrogen arsenate ions in ABG, (ii) Hydrogen arsenate ions transformed into arsenate ions in alkaline environment, and (iii) Under alkaline conditions, calcium ions combined with arsenate ions to form Johnbaumite, whereas the hydrothermal conditions accelerated the crystal growth of Johnbaumite. This study provides a new idea for the synchronous treatment of toxic heavy metal-containing wastewaters and hazardous solid wastes.


Assuntos
Arsênio , Poluentes Químicos da Água , Arsênio/análise , Sulfato de Cálcio , Precipitação Química , Resíduos Perigosos , Concentração de Íons de Hidrogênio , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa