Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS Genet ; 18(8): e1010339, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939521

RESUMO

In Drosophila embryonic CNS, the multipotential stem cells called neuroblasts (NBs) divide by self-renewing asymmetric division and generate bipotential precursors called ganglion mother cells (GMCs). GMCs divide only once to generate two distinct post-mitotic neurons. The genes and the pathways that confer a single division potential to precursor cells or how neurons become post-mitotic are unknown. It has been suggested that the homeodomain protein Prospero (Pros) when localized to the nucleus, limits the stem-cell potential of precursors. Here we show that nuclear Prospero is phosphorylated, where it binds to chromatin. In NB lineages such as MP2, or GMC lineages such as GMC4-2a, Pros allows the one-division potential, as well as the post-mitotic status of progeny neurons. These events are mediated by augmenting the expression of Cyclin E in the precursor and repressing the expression in post-mitotic neurons. Thus, in the absence of Pros, Cyclin E is downregulated in the MP2 cell. Consequently, MP2 fails to divide, instead, it differentiates into one of the two progeny neurons. In progeny cells, Pros reverses its role and augments the downregulation of Cyclin E, allowing neurons to exit the cell cycle. Thus, in older pros mutant embryos Cyclin E is upregulated in progeny cells. These results elucidate a long-standing problem of division potential of precursors and post-mitotic status of progeny cells and how fine-tuning cyclin E expression in the opposite direction controls these fundamental cellular events. This work also sheds light on the post-translational modification of Pros that determines its cytoplasmic versus nuclear localization.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Ciclina E/genética , Ciclina E/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/genética
2.
Allergy ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686450

RESUMO

BACKGROUND: The effects of inhaled corticosteroids (ICS) on healthy airways are poorly defined. OBJECTIVES: To delineate the effects of ICS on gene expression in healthy airways, without confounding caused by changes in disease-related genes and disease-related alterations in ICS responsiveness. METHODS: Randomized open-label bronchoscopy study of high-dose ICS therapy in 30 healthy adult volunteers randomized 2:1 to (i) fluticasone propionate 500 mcg bd daily or (ii) no treatment, for 4 weeks. Laboratory staff were blinded to allocation. Biopsies and brushings were analysed by immunohistochemistry, bulk RNA sequencing, DNA methylation array and metagenomics. RESULTS: ICS induced small between-group differences in blood and lamina propria eosinophil numbers, but not in other immunopathological features, blood neutrophils, FeNO, FEV1, microbiome or DNA methylation. ICS treatment upregulated 72 genes in brushings and 53 genes in biopsies, and downregulated 82 genes in brushings and 416 genes in biopsies. The most downregulated genes in both tissues were canonical markers of type-2 inflammation (FCER1A, CPA3, IL33, CLEC10A, SERPINB10 and CCR5), T cell-mediated adaptive immunity (TARP, TRBC1, TRBC2, PTPN22, TRAC, CD2, CD8A, HLA-DQB2, CD96, PTPN7), B-cell immunity (CD20, immunoglobulin heavy and light chains) and innate immunity, including CD48, Hobit, RANTES, Langerin and GFI1. An IL-17-dependent gene signature was not upregulated by ICS. CONCLUSIONS: In healthy airways, 4-week ICS exposure reduces gene expression related to both innate and adaptive immunity, and reduces markers of type-2 inflammation. This implies that homeostasis in health involves tonic type-2 signalling in the airway mucosa, which is exquisitely sensitive to ICS.

3.
FASEB J ; 37(6): e22966, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37227156

RESUMO

Several lines of evidence indicate that ancestral diet might play an important role in determining offspring's metabolic traits. However, it is not yet clear whether ancestral diet can affect offspring's food choices and feeding behavior. In the current study, taking advantage of Drosophila model system, we demonstrate that paternal Western diet (WD) increases offspring food consumption up to the fourth generation. Paternal WD also induced alterations in F1 offspring brain proteome. Using enrichment analyses of pathways for upregulated and downregulated proteins, we found that upregulated proteins had significant enrichments in terms related to translation and translation factors, whereas downregulated proteins displayed enrichments in small molecule metabolic processes, TCA cycles, and electron transport chain (ETC). Using MIENTURNET miRNA prediction tool, dme-miR-10-3p was identified as the top conserved miRNA predicted to target proteins regulated by ancestral diet. RNAi-based knockdown of miR-10 in the brain significantly increased food consumption, implicating miR-10 as a potential factor in programming feeding behavior. Together, these findings suggest that ancestral nutrition may influence offspring feeding behavior through alterations in miRNAs.


Assuntos
MicroRNAs , Proteoma , Animais , Proteoma/metabolismo , Dieta Ocidental , Drosophila/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Encéfalo/metabolismo
4.
Gut ; 72(8): 1451-1461, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36732049

RESUMO

BACKGROUND: The interleukin-22 cytokine (IL-22) has demonstrated efficacy in preclinical colitis models with non-immunosuppressive mechanism of action. Efmarodocokin alfa (UTTR1147A) is a fusion protein agonist that links IL-22 to the crystallisable fragment (Fc) of human IgG4 for improved pharmacokinetic characteristics, but with a mutation to minimise Fc effector functions. METHODS: This randomised, phase 1b study evaluated the safety, tolerability, pharmacokinetics and pharmacodynamics of repeat intravenous dosing of efmarodocokin alfa in healthy volunteers (HVs; n=32) and patients with ulcerative colitis (n=24) at 30-90 µg/kg doses given once every 2 weeks or monthly (every 4 weeks) for 12 weeks (6:2 active:placebo per cohort). RESULTS: The most common adverse events (AEs) were on-target, reversible, dermatological effects (dry skin, erythema and pruritus). Dose-limiting non-serious dermatological AEs (severe dry skin, erythema, exfoliation and discomfort) were seen at 90 µg/kg once every 2 weeks (HVs, n=2; patients, n=1). Pharmacokinetics were generally dose-proportional across the dose levels, but patients demonstrated lower drug exposures relative to HVs at the same dose. IL-22 serum biomarkers and IL-22-responsive genes in colon biopsies were induced with active treatment, and microbiota composition changed consistent with a reversal in baseline dysbiosis. As a phase 1b study, efficacy endpoints were exploratory only. Clinical response was observed in 7/18 active-treated and 1/6 placebo-treated patients; clinical remission was observed in 5/18 active-treated and 0/6 placebo-treated patients. CONCLUSION: Efmarodocokin alfa had an adequate safety and pharmacokinetic profile in HVs and patients. Biomarker data confirmed IL-22R pathway activation in the colonic epithelium. Results support further investigation of this non-immunosuppressive potential inflammatory bowel disease therapeutic. TRIAL REGISTRATION NUMBER: NCT02749630.


Assuntos
Colite Ulcerativa , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Voluntários Saudáveis , Administração Intravenosa , Biomarcadores
5.
PLoS Genet ; 16(9): e1009011, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32986715

RESUMO

Neuronal precursor cells undergo self-renewing and non-self-renewing asymmetric divisions to generate a large number of neurons of distinct identities. In Drosophila, primary precursor neuroblasts undergo a varying number of self-renewing asymmetric divisions, with one known exception, the MP2 lineage, which undergoes just one terminal asymmetric division similar to the secondary precursor cells. The mechanism and the genes that regulate the transition from self-renewing to non-self-renewing asymmetric division or the number of times a precursor divides is unknown. Here, we show that the T-box transcription factor, Midline (Mid), couples these events. We find that in mid loss of function mutants, MP2 undergoes additional self-renewing asymmetric divisions, the identity of progeny neurons generated dependent upon Numb localization in the parent MP2. MP2 expresses Mid transiently and an over-expression of mid in MP2 can block its division. The mechanism which directs the self-renewing asymmetric division of MP2 in mid involves an upregulation of Cyclin E. Our results indicate that Mid inhibits cyclin E gene expression by binding to a variant Mid-binding site in the cyclin E promoter and represses its expression without entirely abolishing it. Consistent with this, over-expression of cyclin E in MP2 causes its multiple self-renewing asymmetric division. These results reveal a Mid-regulated pathway that restricts the self-renewing asymmetric division potential of cells via inhibiting cyclin E and facilitating their exit from cell cycle.


Assuntos
Divisão Celular/genética , Sistema Nervoso Central/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Ciclo Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Hormônios Juvenis/genética , Hormônios Juvenis/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Proteínas com Domínio T/genética , Fatores de Transcrição/genética
6.
Mol Syst Biol ; 9: 660, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23591776

RESUMO

Gene regulation in bacteria is usually described as an adaptive response to an environmental change so that genes are expressed when they are required. We instead propose that most genes are under indirect control: their expression responds to signal(s) that are not directly related to the genes' function. Indirect control should perform poorly in artificial conditions, and we show that gene regulation is often maladaptive in the laboratory. In Shewanella oneidensis MR-1, 24% of genes are detrimental to fitness in some conditions, and detrimental genes tend to be highly expressed instead of being repressed when not needed. In diverse bacteria, there is little correlation between when genes are important for optimal growth or fitness and when those genes are upregulated. Two common types of indirect control are constitutive expression and regulation by growth rate; these occur for genes with diverse functions and often seem to be suboptimal. Because genes that have closely related functions can have dissimilar expression patterns, regulation may be suboptimal in the wild as well as in the laboratory.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Aptidão Genética , Shewanella/genética , Proteínas de Bactérias/metabolismo , Cromatina/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Shewanella/metabolismo , Estresse Fisiológico , Transcrição Gênica , Zymomonas/genética , Zymomonas/metabolismo
7.
Mol Syst Biol ; 9: 674, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23774757

RESUMO

The efficient production of biofuels from cellulosic feedstocks will require the efficient fermentation of the sugars in hydrolyzed plant material. Unfortunately, plant hydrolysates also contain many compounds that inhibit microbial growth and fermentation. We used DNA-barcoded mutant libraries to identify genes that are important for hydrolysate tolerance in both Zymomonas mobilis (44 genes) and Saccharomyces cerevisiae (99 genes). Overexpression of a Z. mobilis tolerance gene of unknown function (ZMO1875) improved its specific ethanol productivity 2.4-fold in the presence of miscanthus hydrolysate. However, a mixture of 37 hydrolysate-derived inhibitors was not sufficient to explain the fitness profile of plant hydrolysate. To deconstruct the fitness profile of hydrolysate, we profiled the 37 inhibitors against a library of Z. mobilis mutants and we modeled fitness in hydrolysate as a mixture of fitness in its components. By examining outliers in this model, we identified methylglyoxal as a previously unknown component of hydrolysate. Our work provides a general strategy to dissect how microbes respond to a complex chemical stress and should enable further engineering of hydrolysate tolerance.


Assuntos
Celulose/metabolismo , Etanol/metabolismo , Modelos Químicos , Modelos Genéticos , Saccharomyces cerevisiae/metabolismo , Zymomonas/metabolismo , Biomassa , Celulose/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Fermentação , Biblioteca Gênica , Genes Bacterianos , Genes Fúngicos , Hidrólise , Mutação , Aldeído Pirúvico/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Estresse Fisiológico , Zymomonas/efeitos dos fármacos , Zymomonas/genética
8.
Genetics ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805187

RESUMO

The T-box proteins have a 180-230 amino acid DNA-binding domain, first reported in the Brachyury (T) protein. It is highly conserved among metazoans. They regulate a multitude of cellular functions in development and disease. Here, we report post-transcriptional and translational regulation of midline (mid), a Tbx member in Drosophila. We found that the 3'UTR of mid has mRNA degradation elements and AT-rich sequences. In Schneider S2 cells, mid mRNA could be detected only when the transgene was without the 3'UTR. Similarly, the 3'UTR linked to the Renilla Luciferase reporter significantly reduced the activity of the Luciferase. Whereas deleting only the degradation elements from the 3'UTR resulted in reduced activity but not as much. Overexpression of mid in MP2, an embryonic neuroblast, showed no significant difference in the levels of mid mRNA between the two transgenes, with and without the 3'UTR, indicating the absence of post-transcriptional regulation of mid in MP2. Moreover, while elevated mid RNA was detected in MP2 in nearly all hemisegments, only a fifth of those hemisegments had elevated levels of the protein. Over-expression of the two transgenes resulted in MP2-lineage defects about the same frequency. These results indicate a translational/post-translational regulation of mid in MP2. The regulation of ectopically expressed mid in the wing imaginal disc was complex. In the wing disc, where mid is not expressed, the ectopic expression of the transgene lacking the 3'UTR had a higher level of mid RNA and the protein and had a stronger phenotypic effect. These results indicate that the 3'UTR can subject mid-mRNA to degradation in a cell and tissue-specific manner. We further report a balancer-mediated transgenerational modifier effect on the expression and gain of function effects of the two transgenes.

9.
J Crohns Colitis ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267224

RESUMO

BACKGROUND AND AIMS: The goal was to identify microbial drivers of IBD, by investigating mucosal-associated bacteria and their detrimental products in IBD patients. METHODS: We directly cultured bacterial communities from mucosal biopsies from pediatric gastrointestinal patients and examined for pathogenicity-associated traits. Upon identifying C. perfringens as toxigenic bacteria present in mucosal biopsies, we isolated strains and further characterized toxicity and prevalence. RESULTS: Mucosal biopsy microbial composition differed from corresponding stool samples. C. perfringens was present in 8 of 9 patients' mucosal biopsies, correlating with hemolytic activity, while not in all corresponding stool samples. Large IBD datasets showed higher C. perfringens prevalence in stool samples of IBD adults (18.7-27.1%) versus healthy (5.1%). In vitro, C. perfringens supernatants were toxic to cell types beneath the intestinal epithelial barrier, including endothelial, neuroblasts, and neutrophils, while impact on epithelial cells was less pronounced, suggesting C. perfringens may be damaging particularly when barrier integrity is compromised. Further characterization using purified toxins and genetic insertion mutants confirmed PFO toxin was sufficient for toxicity. Toxin RNA signatures were found in the original patient biopsies by PCR, suggesting intestinal production. C. perfringens supernatants also induced activation of neuroblast and dorsal root ganglion neurons in vitro, suggesting C. perfringens in inflamed mucosal tissue may directly contribute to abdominal pain, a frequent IBD symptom. CONCLUSIONS: Gastrointestinal carriage of certain toxigenic C. perfringens may have an important pathogenic impact on IBD patients. These findings support routine monitoring of C. perfringens and PFO toxins and potential treatment in patients.

10.
Microbiome ; 11(1): 47, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894983

RESUMO

BACKGROUND: IL-22 is induced by aryl hydrocarbon receptor (AhR) signaling and plays a critical role in gastrointestinal barrier function through effects on antimicrobial protein production, mucus secretion, and epithelial cell differentiation and proliferation, giving it the potential to modulate the microbiome through these direct and indirect effects. Furthermore, the microbiome can in turn influence IL-22 production through the synthesis of L-tryptophan (L-Trp)-derived AhR ligands, creating the prospect of a host-microbiome feedback loop. We evaluated the impact IL-22 may have on the gut microbiome and its ability to activate host AhR signaling by observing changes in gut microbiome composition, function, and AhR ligand production following exogenous IL-22 treatment in both mice and humans. RESULTS: Microbiome alterations were observed across the gastrointestinal tract of IL-22-treated mice, accompanied by an increased microbial functional capacity for L-Trp metabolism. Bacterially derived indole derivatives were increased in stool from IL-22-treated mice and correlated with increased fecal AhR activity. In humans, reduced fecal concentrations of indole derivatives in ulcerative colitis (UC) patients compared to healthy volunteers were accompanied by a trend towards reduced fecal AhR activity. Following exogenous IL-22 treatment in UC patients, both fecal AhR activity and concentrations of indole derivatives increased over time compared to placebo-treated UC patients. CONCLUSIONS: Overall, our findings indicate IL-22 shapes gut microbiome composition and function, which leads to increased AhR signaling and suggests exogenous IL-22 modulation of the microbiome may have functional significance in a disease setting. Video Abstract.


Assuntos
Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Receptores de Hidrocarboneto Arílico/metabolismo , Interleucinas , Indóis , Interleucina 22
11.
Nucleic Acids Res ; 38(7): 2302-13, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20061370

RESUMO

In Saccharomyces cerevisiae, the DNA damage response (DDR) is activated by the spatio-temporal colocalization of Mec1-Ddc2 kinase and the 9-1-1 clamp. In the absence of direct means to monitor Mec1 kinase activation in vivo, activation of the checkpoint kinase Rad53 has been taken as a proxy for DDR activation. Here, we identify serine 378 of the Rad55 recombination protein as a direct target site of Mec1. Rad55-S378 phosphorylation leads to an electrophoretic mobility shift of the protein and acts as a sentinel for Mec1 activation in vivo. A single double-stranded break (DSB) in G1-arrested cells causes phosphorylation of Rad55-S378, indicating activation of Mec1 kinase. However, Rad53 kinase is not detectably activated under these conditions. This response required Mec1-Ddc2 and loading of the 9-1-1 clamp by Rad24-RFC, but not Rad9 or Mrc1. In addition to Rad55-S378, two additional direct Mec1 kinase targets are phosphorylated, the middle subunit of the ssDNA-binding protein RPA, RPA2 and histone H2A (H2AX). These data suggest the existence of a truncated signaling pathway in response to a single DSB in G1-arrested cells that activates Mec1 without eliciting a full DDR involving the entire signaling pathway including the effector kinases.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Reparo do DNA , Proteínas de Ligação a DNA/química , Ensaio de Desvio de Mobilidade Eletroforética , Fase G1/genética , Histonas/metabolismo , Fosforilação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Serina/metabolismo
12.
J Vis Exp ; (168)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33645581

RESUMO

Spirocyclic heterocycles have recently been reported in literature to be potential drugs for cancer therapy. The synthesis of these novel orthogonal ring systems is challenging. An efficient methodology to synthesize these compounds was recently published that described the solid phase synthesis in four steps rather than the previously reported five steps. The advantage of this shorter synthesis is the elimination of the use of toxic reagents. Low-loading Regenerating Michael (REM) linker-based resin was found to be crucial in the synthesis as high-loading versions prevented the addition of reagents containing bulky phenyl and aromatic side chains. The colorimetric 3-(4',5'-dimethylthiazol-2'-yl)-2,5- diphenyltetrazolium bromide (MTT) assay was used to examine the cytotoxicity of micromolar concentrations of these novel spirocyclic molecules in vitro. MTT is readily available commercially and produces relatively fast, reliable results, making this assay ideal for these spirocyclic heterocycles. Orthogonal ring structures as well as furfurylamine (a precursor in the synthesis method containing a similar 5-member ring motif) were tested.


Assuntos
Proliferação de Células , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/farmacologia , Técnicas de Síntese em Fase Sólida/métodos , Compostos de Espiro/síntese química , Compostos de Espiro/farmacologia , Animais , Células COS , Chlorocebus aethiops
13.
FASEB Bioadv ; 3(1): 49-64, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33490883

RESUMO

High saturated fat, sugar, and salt contents are a staple of a Western diet (WD), contributing to obesity, metabolic syndrome, and a plethora of other health risks. However, the combinatorial effects of these ingredients have not been fully evaluated. Here, using the wild-caught Drosophila simulans, we show that a diet enriched with saturated fat, sugar, and salt is more detrimental than each ingredient separately, resulting in a significantly decreased lifespan, locomotor activity, sleep, reproductive function, and mitochondrial function. These detrimental effects were more pronounced in female than in male flies. Adding regular flight exercise to flies on the WD markedly negated the adverse effects of a WD. At the molecular level, the WD significantly increased levels of triglycerides and caused mitochondrial dysfunction, while exercise counterbalanced these effects. Interestingly, fruit flies developed a preference for the WD after pre-exposure, which was averted by flight exercise. The results demonstrate that regular aerobic exercise can mitigate adverse dietary effects on fly mitochondrial function, physiology, and feeding behavior. Our data establish Drosophila simulans as a novel model of diet-exercise interaction that bears a strong similarity to the pathophysiology of obesity and eating disorders in humans.

14.
ERJ Open Res ; 7(3)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34350278

RESUMO

INTRODUCTION: COPD exacerbations are heterogeneous and can be triggered by bacterial, viral, or noninfectious insults. Exacerbations are also heterogeneous in neutrophilic or eosinophilic inflammatory responses. A noninvasive peripheral biomarker of COPD exacerbations characterised by bacterial/neutrophilic inflammation is lacking. Granulocyte-colony stimulating factor (G-CSF) is a key cytokine elevated during bacterial infection and mediates survival, proliferation, differentiation and function of neutrophils. OBJECTIVE: We hypothesised that high peripheral G-CSF would be indicative of COPD exacerbations with a neutrophilic and bacterial phenotype associated with microbial dysbiosis. METHODS: Serum G-CSF was measured during hospitalised exacerbation (day 0 or D0) and after 30 days of recovery (Day30 or D30) in 37 subjects. In a second cohort, serum and sputum cytokines were measured in 59 COPD patients during stable disease, at exacerbation, and at 2-weeks and 6-weeks following exacerbation. RESULTS: Serum G-CSF was increased during exacerbation in a subset of patients. These exacerbations were enriched for bacterial but not viral or type-2 biologies. The median serum G-CSF level was 1.6-fold higher in bacterial exacerbation compared to nonbacterial exacerbation (22 pg·mL-1 versus 13 pg·mL-1, p=0.0007). Serum G-CSF classified bacterial exacerbations with an area under the curve (AUC) for the receiver operating characteristic (ROC) curve equal to 0.76. Exacerbations with a two-fold or greater increase in serum G-CSF were characterised by neutrophilic inflammation, with increased sputum and blood neutrophils, and high sputum interleukin (IL)-1ß, IL-6 and serum amyloid A1 (SAA1) levels. These exacerbations were preceded by dysbiosis, with decreased microbiome diversity and enrichment of respiratory pathogens such as Haemophilus and Moraxella. Furthermore, serum G-CSF at exacerbation classified neutrophilic-dysbiotic exacerbations (AUC for the ROC curve equal to 0.75). CONCLUSIONS: High serum G-CSF enriches for COPD exacerbations characterised by neutrophilic inflammation with underlying bacterial dysbiosis.

15.
Nat Commun ; 9(1): 707, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453431

RESUMO

Gut microbiota dysbiosis and metabolic dysfunction in infancy precedes childhood atopy and asthma development. Here we examined gut microbiota maturation over the first year of life in infants at high risk for asthma (HR), and whether it is modifiable by early-life Lactobacillus supplementation. We performed a longitudinal comparison of stool samples collected from HR infants randomized to daily oral Lactobacillus rhamnosus GG (HRLGG) or placebo (HRP) for 6 months, and healthy (HC) infants. Meconium microbiota of HRP participants is distinct, follows a delayed developmental trajectory, and is primarily glycolytic and depleted of a range of anti-inflammatory lipids at 6 months of age. These deficits are partly rescued in HRLGG infants, but this effect was lost at 12 months of age, 6 months after cessation of supplementation. Thus we show that early-life gut microbial development is distinct, but plastic, in HR infants. Our findings offer a novel strategy for early-life preventative interventions.


Assuntos
Asma/microbiologia , Microbioma Gastrointestinal , Imunomodulação , Lacticaseibacillus rhamnosus , Probióticos/uso terapêutico , Asma/prevenção & controle , Humanos , Lactente , Recém-Nascido , Mecônio/microbiologia , Linfócitos T Reguladores
16.
mBio ; 7(4)2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27531910

RESUMO

UNLABELLED: Significant gut microbiota heterogeneity exists among ulcerative colitis (UC) patients, though the clinical implications of this variance are unknown. We hypothesized that ethnically distinct UC patients exhibit discrete gut microbiotas with unique metabolic programming that differentially influence immune activity and clinical status. Using parallel 16S rRNA and internal transcribed spacer 2 sequencing of fecal samples (UC, 30; healthy, 13), we corroborated previous observations of UC-associated bacterial diversity depletion and demonstrated significant Saccharomycetales expansion as characteristic of UC gut dysbiosis. Furthermore, we identified four distinct microbial community states (MCSs) within our cohort, confirmed their existence in an independent UC cohort, and demonstrated their coassociation with both patient ethnicity and disease severity. Each MCS was uniquely enriched for specific amino acid, carbohydrate, and lipid metabolism pathways and exhibited significant luminal enrichment of the metabolic products of these pathways. Using a novel ex vivo human dendritic cell and T-cell coculture assay, we showed that exposure to fecal water from UC patients caused significant Th2 skewing in CD4(+) T-cell populations compared to that of healthy participants. In addition, fecal water from patients in whom their MCS was associated with the highest level of disease severity induced the most dramatic Th2 skewing. Combined with future investigations, these observations could lead to the identification of highly resolved UC subsets based on defined microbial gradients or discrete microbial features that may be exploited for the development of novel, more effective therapies. IMPORTANCE: Despite years of research, the etiology of UC remains enigmatic. Diagnosis is difficult and the patient population heterogeneous, which represents a significant barrier to the development of more effective, tailored therapy. In this study, we demonstrate the clinical utility of the gut microbiome in stratifying UC patients by identifying the existence of four distinct interkingdom pathogenic microbiotas within the UC patient population that are compositionally and metabolically distinct, covary with clinical markers of disease severity, and drive discrete CD4(+) T-cell expansions ex vivo These findings offer new insight into the potential value of the gut microbiome as a tool for subdividing UC patients, opening avenues to the development of more personalized treatment plans and targeted therapies.


Assuntos
Bactérias/classificação , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Microbioma Gastrointestinal , Microbiota , Saccharomycetales/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Produtos Biológicos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Colite Ulcerativa/microbiologia , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Células Dendríticas/imunologia , Etnicidade , Humanos , Ativação Linfocitária , Redes e Vias Metabólicas/genética , RNA Ribossômico 16S/genética , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento , Análise de Sequência de DNA
17.
Gut Microbes ; 5(4): 494-503, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25144681

RESUMO

Inflammatory bowel diseases encompass gastrointestinal illnesses typified by chronic inflammation, loss of epithelial integrity and gastrointestinal microbiota dysbiosis. In an effort to counteract these characteristic perturbations, we used stem cells and/or a probiotic therapy in a murine model of Dextran Sodium Sulfate induced colitis to examine both their efficacy in ameliorating disease and impact on niche-specific microbial communities of the lower GI tract. Colitis was induced in C57BL/6 mice by administering 3% DSS in drinking water for 10 days prior to administering one of three treatment plans: daily probiotic (VSL#3) supplementation for 3 days, a single tail vein injection of 1x10 (6) murine mesenchymal stem cells, or both. Ileal, cecal and colonic sections were collected for microbiota and histological analyses. Microbiota profiling revealed distinct bacterial community compositions in the ileum, cecum and colon of control untreated animals, all of which were predicted in silico to be enriched for a number of discrete KEGG pathways, indicating compositional and functional niche specificity in healthy animals. DSS-treatment perturbed community composition in all three niches with ileal communities exhibiting the greatest change relative to control animals. Each treatment group exhibited treatment-specific alterations in microbiota composition in the lower GI tract, though disease scores were only improved in VSL#3-treated animals. The ileal microbiota were most profoundly altered in composition in this group of animals and characterized by significant Enterobacteriaceae enrichment compared with colitic mice (P<0.05).


Assuntos
Biota/efeitos dos fármacos , Colite/microbiologia , Colite/terapia , Sulfato de Dextrana/toxicidade , Dietoterapia/métodos , Probióticos/administração & dosagem , Transplante de Células-Tronco/métodos , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Ceco/microbiologia , Ceco/patologia , Colite/induzido quimicamente , Colite/patologia , Colo/microbiologia , Colo/patologia , Sulfato de Dextrana/administração & dosagem , Feminino , Trato Gastrointestinal/microbiologia , Histocitoquímica , Íleo/microbiologia , Íleo/patologia , Camundongos Endogâmicos C57BL , Índice de Gravidade de Doença , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa