Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(19): 3325-3340, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35604360

RESUMO

Intellectual disability (ID) is a neurodevelopmental disorder frequently caused by monogenic defects. In this study, we collected 14 SEMA6B heterozygous variants in 16 unrelated patients referred for ID to different centers. Whereas, until now, SEMA6B variants have mainly been reported in patients with progressive myoclonic epilepsy, our study indicates that the clinical spectrum is wider and also includes non-syndromic ID without epilepsy or myoclonus. To assess the pathogenicity of these variants, selected mutated forms of Sema6b were overexpressed in Human Embryonic Kidney 293T (HEK293T) cells and in primary neuronal cultures. shRNAs targeting Sema6b were also used in neuronal cultures to measure the impact of the decreased Sema6b expression on morphogenesis and synaptogenesis. The overexpression of some variants leads to a subcellular mislocalization of SEMA6B protein in HEK293T cells and to a reduced spine density owing to loss of mature spines in neuronal cultures. Sema6b knockdown also impairs spine density and spine maturation. In addition, we conducted in vivo rescue experiments in chicken embryos with the selected mutated forms of Sema6b expressed in commissural neurons after knockdown of endogenous SEMA6B. We observed that expression of these variants in commissural neurons fails to rescue the normal axon pathway. In conclusion, identification of SEMA6B variants in patients presenting with an overlapping phenotype with ID and functional studies highlight the important role of SEMA6B in neuronal development, notably in spine formation and maturation and in axon guidance. This study adds SEMA6B to the list of ID-related genes.


Assuntos
Epilepsia , Deficiência Intelectual , Semaforinas , Animais , Orientação de Axônios , Embrião de Galinha , Espinhas Dendríticas , Epilepsia/genética , Células HEK293 , Humanos , Deficiência Intelectual/genética , Semaforinas/genética
2.
Am J Hum Genet ; 108(10): 2006-2016, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34626583

RESUMO

Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy. Modeling indicated damaging effect of variants on the protein, largely via destabilizing effects on protein domains. Brain imaging revealed diminished cerebral volume, thin corpus callosum, and periventricular leukomalacia, and quantitative volumetry demonstrated significantly diminished white matter volumes in several individuals. Immunofluorescent imaging in rat hippocampal neurons revealed localization of Spata5l1 in neuronal and glial cell nuclei and more prominent expression in neurons. In the rodent inner ear, Spata5l1 is expressed in the neurosensory hair cells and inner ear supporting cells. Transcriptomic analysis performed with fibroblasts from affected individuals was able to distinguish affected from controls by principal components. Analysis of differentially expressed genes and networks suggested a role for SPATA5L1 in cell surface adhesion receptor function, intracellular focal adhesions, and DNA replication and mitosis. Collectively, our results indicate that bi-allelic SPATA5L1 variants lead to a human disease characterized by sensorineural hearing loss (SNHL) with or without a nonprogressive mixed neurodevelopmental phenotype.


Assuntos
Paralisia Cerebral/patologia , Epilepsia/patologia , Predisposição Genética para Doença , Variação Genética , Perda Auditiva/patologia , Deficiência Intelectual/patologia , Espasticidade Muscular/patologia , ATPases Associadas a Diversas Atividades Celulares/genética , Adolescente , Adulto , Alelos , Animais , Paralisia Cerebral/etiologia , Paralisia Cerebral/metabolismo , Pré-Escolar , Epilepsia/etiologia , Epilepsia/metabolismo , Feminino , Perda Auditiva/etiologia , Perda Auditiva/metabolismo , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/etiologia , Deficiência Intelectual/metabolismo , Masculino , Espasticidade Muscular/etiologia , Espasticidade Muscular/metabolismo , Ratos , Adulto Jovem
3.
Clin Genet ; 105(1): 81-86, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558216

RESUMO

Pitt-Hopkins syndrome (PTHS) is a rare neurodevelopmental disorder characterised by severe intellectual disability (ID), distinctive facial features and autonomic nervous system dysfunction, caused by TCF4 haploinsufficiency. We clinically diagnosed with PTHS a 14 6/12 -year-old female, who had a normal status of TCF4. The pathogenic c.667del (p.Asp223MetfsTer45) variant in SOX11 was identified through whole exome sequencing (WES). SOX11 variants were initially reported to cause Coffin-Siris syndrome (CSS), characterised by growth restriction, moderate ID, coarse face, hypertrichosis and hypoplastic nails. However, recent studies have provided evidence that they give rise to a distinct neurodevelopmental disorder. To date, SOX11 variants are associated with a variable phenotype, which has been described to resemble CSS in some cases, but never PTHS. By reviewing both clinically and genetically 32 out of 82 subjects reported in the literature with SOX11 variants, for whom detailed information are provided, we found that 7/32 (22%) had a clinical presentation overlapping PTHS. Furthermore, we made a confirmation that overall SOX11 abnormalities feature a distinctive disorder characterised by severe ID, high incidence of microcephaly and low frequency of congenital malformations. Purpose of the present report is to enhance the role of clinical genetics in assessing the individual diagnosis after WES results.


Assuntos
Deficiência Intelectual , Feminino , Humanos , Criança , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fácies , Hiperventilação/diagnóstico , Hiperventilação/genética , Fenótipo , Fator de Transcrição 4/genética , Fatores de Transcrição SOXC/genética
4.
Hum Mol Genet ; 30(1): 65-71, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33445179

RESUMO

In the last few years, NEK1 has been identified as a new gene related to amyotrophic lateral sclerosis (ALS). Loss-of-function variants have been mostly described, although several missense variants exist, which pathogenic relevance remains to be established. We attempted to determine the contribution of NEK1 gene in an Italian cohort of 531 sporadic and familial amyotrophic lateral sclerosis (ALS) patients applying massive parallel sequencing technologies. We filtered results of NEK1 gene and identified 20 NEK1 rare variants (MAF < 0.01) in 22 patients. In particular, we found two novel frameshift variants (p.Glu929Asnfs*12 and p.Val1030Ilefs*23), 18 missense variants, including the p.Arg261His in three patients, and a novel variant in the start codon, the p.Met1?, which most likely impairs translation initiation. To clarify the role of NEK1 missense variants we investigated NEK1 expression in primary fibroblast cultures. We obtained skin biopsies from four patients with NEK1 variants and we assessed NEK1 expression by western blot and immunofluorescence. We detected a decrease in NEK1 expression in fibroblasts from patients with NEK1 variants, suggesting that missense variants in NEK1 gene may have a pathogenic role. Moreover, we observed additional variants in ALS related genes in seven patients with NEK1 variants (32%), further supporting an oligogenic ALS model.


Assuntos
Esclerose Lateral Amiotrófica/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Quinase 1 Relacionada a NIMA/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/fisiopatologia , Estudos de Coortes , Feminino , Fibroblastos , Humanos , Mutação com Perda de Função/genética , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Cultura Primária de Células
5.
Eur J Neurol ; 30(5): 1246-1255, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36732882

RESUMO

BACKGROUND AND OBJECTIVES: Genetic variants in the gene TARDBP, encoding TDP-43 protein, are associated with amyotrophic lateral sclerosis (ALS) in familial (fALS) and sporadic (sALS) cases. Objectives of this study were to assess the contribution of TARDBP in a large cohort of Italian ALS patients, to determine the TARDBP-associated clinical features and to look for genotype-phenotype correlation and penetrance of the mutations. METHODS: A total of 1992 Italian ALS patients (193 fALS and 1799 sALS) were enrolled in this study. Sanger sequencing of TARDBP gene was performed in patients and, when available, in patients' relatives. RESULTS: In total, 13 different rare variants were identified in 43 index cases (10 fALS and 33 sALS) with a cumulative mutational frequency of 2.2% (5.2% of fALS, 1.8% of sALS). The most prevalent variant was the p.A382T followed by the p.G294V. Cognitive impairment was detected in almost 30% of patients. While some variants, including the p.G294V and the p.G376D, were associated with restricted phenotypes, the p.A382T showed a marked clinical heterogeneity regarding age of onset, survival and association with cognitive impairment. Investigations in parents, when possible, showed that the variants were inherited from healthy carriers and never occurred de novo. CONCLUSIONS: In our cohort, TARDBP variants have a relevant frequency in Italian ALS patients and they are significantly associated with cognitive impairment. Clinical presentation is heterogeneous. Consistent genotype-phenotype correlations are limited to some mutations. A marked phenotypic variability characterizes the p.A382T variant, suggesting a multifactorial/oligogenic pathogenic mechanism.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Estudos de Associação Genética , Mutação/genética , Fenótipo
6.
J Med Genet ; 59(2): 189-195, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33361104

RESUMO

BACKGROUND: Koolen-de Vries syndrome (KdVS) is a multisystem neurodevelopmental disorder caused by 17q21.31 deletions or mutations in KANSL1. It was mainly described in children. METHODS: A retrospective study on 9 subjects aged 19-45 years and revision of 18 literature patients, with the purpose to get insights into the phenotypic evolution with time, and into the clinical manifestations in adulthood. RESULTS: Seven patients had a 17q21.31 deletion and two a point mutation in KANSL1. All had intellectual disability, which was mild in five (56%) and moderate in four (44%). Epilepsy was diagnosed in four subjects (44%), with onset from 1 to 7 years and full remission before 9 years in 3/4 patients. Scoliosis affected seven individuals (77.7%) and it was substantially stable with age in 5/7 patients, allowing for simple daily activities. Two subjects had severely progressive scoliosis, which was surgically corrected. Overweight or true obesity did occur after puberty in six patients (67%). Behaviour abnormalities were recorded in six patients (67%). The facial phenotype slightly evolved with time to include thick eyebrows, elongated nose and pronounced pointed chin. Despite behaviour abnormalities, happy disposition and sociable attitudes were common. Half of patients had fluent language and were good at writing and reading. Rich language, although limited to single words or short sentences, and very limited or absent skills in writing and reading were observed in the remaining patients. Autonomy in daily activities and personal care was usually limited. CONCLUSIONS: Distinctive features in adult KdVS subjects include intellectual disability, overweight/obesity, behaviour abnormalities with preserved social interest, ability in language, slight worsening of the facial phenotype and no seizures.


Assuntos
Anormalidades Múltiplas/patologia , Deficiência Intelectual/patologia , Proteínas Nucleares/genética , Anormalidades Múltiplas/genética , Adulto , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Estudos Retrospectivos , Adulto Jovem
7.
Am J Med Genet A ; 182(1): 257-267, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769173

RESUMO

"An International Meeting on Wolf-Hirschhorn Syndrome (WHS)" was held at The University Hospital La Paz in Madrid, Spain (October 13-14, 2017). One hundred and twenty-five people, including physicians, scientists and affected families, attended the meeting. Parent and patient advocates from the Spanish Association of WHS opened the meeting with a panel discussion to set the stage regarding their hopes and expectations for therapeutic advances. In keeping with the theme on therapeutic development, the sessions followed a progression from description of the phenotype and definition of therapeutic endpoints, to definition of genomic changes. These proceedings will review the major points of discussion.


Assuntos
Cromossomos Humanos Par 4/imunologia , Deficiências do Desenvolvimento/genética , Convulsões/genética , Síndrome de Wolf-Hirschhorn/genética , Deleção Cromossômica , Cromossomos Humanos Par 4/genética , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Fenótipo , Convulsões/epidemiologia , Convulsões/terapia , Espanha/epidemiologia , Síndrome de Wolf-Hirschhorn/epidemiologia , Síndrome de Wolf-Hirschhorn/terapia
8.
Clin Genet ; 95(4): 462-478, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30677142

RESUMO

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder characterized by intellectual disability, specific facial features, and marked autonomic nervous system dysfunction, especially with disturbances of regulating respiration and intestinal mobility. It is caused by variants in the transcription factor TCF4. Heterogeneity in the clinical and molecular diagnostic criteria and care practices has prompted a group of international experts to establish guidelines for diagnostics and care. For issues, for which there was limited information available in international literature, we collaborated with national support groups and the participants of a syndrome specific international conference to obtain further information. Here, we discuss the resultant consensus, including the clinical definition of PTHS and a molecular diagnostic pathway. Recommendations for managing particular health problems such as dysregulated respiration are provided. We emphasize the need for integration of care for physical and behavioral issues. The recommendations as presented here will need to be evaluated for improvements to allow for continued optimization of diagnostics and care.


Assuntos
Hiperventilação/diagnóstico , Hiperventilação/terapia , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/terapia , Fatores Etários , Terapia Combinada , Diagnóstico Diferencial , Gerenciamento Clínico , Suscetibilidade a Doenças , Fácies , Testes Genéticos , Humanos , Hiperventilação/etiologia , Deficiência Intelectual/etiologia , Mutação , Fenótipo , Fator de Transcrição 4/genética
9.
Brain ; 141(9): 2576-2591, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107533

RESUMO

Synaptotagmin 1 (SYT1) is a critical mediator of fast, synchronous, calcium-dependent neurotransmitter release and also modulates synaptic vesicle endocytosis. This paper describes 11 patients with de novo heterozygous missense mutations in SYT1. All mutations alter highly conserved residues, and cluster in two regions of the SYT1 C2B domain at positions Met303 (M303K), Asp304 (D304G), Asp366 (D366E), Ile368 (I368T) and Asn371 (N371K). Phenotypic features include infantile hypotonia, congenital ophthalmic abnormalities, childhood-onset hyperkinetic movement disorders, motor stereotypies, and developmental delay varying in severity from moderate to profound. Behavioural characteristics include sleep disturbance and episodic agitation. Absence of epileptic seizures and normal orbitofrontal head circumference are important negative features. Structural MRI is unremarkable but EEG disturbance is universal, characterized by intermittent low frequency high amplitude oscillations. The functional impact of these five de novo SYT1 mutations has been assessed by expressing rat SYT1 protein containing the equivalent human variants in wild-type mouse primary hippocampal cultures. All mutant forms of SYT1 were expressed at levels approximately equal to endogenous wild-type protein, and correctly localized to nerve terminals at rest, except for SYT1M303K, which was expressed at a lower level and failed to localize at nerve terminals. Following stimulation, SYT1I368T and SYT1N371K relocalized to nerve terminals at least as efficiently as wild-type SYT1. However, SYT1D304G and SYT1D366E failed to relocalize to nerve terminals following stimulation, indicative of impairments in endocytic retrieval and trafficking of SYT1. In addition, the presence of SYT1 variants at nerve terminals induced a slowing of exocytic rate following sustained action potential stimulation. The extent of disturbance to synaptic vesicle kinetics is mirrored by the severity of the affected individuals' phenotypes, suggesting that the efficiency of SYT1-mediated neurotransmitter release is critical to cognitive development. In summary, de novo dominant SYT1 missense mutations are associated with a recognizable neurodevelopmental syndrome, and further cases can now be diagnosed based on clinical features, electrophysiological signature and mutation characteristics. Variation in phenotype severity may reflect mutation-specific impact on the diverse physiological functions of SYT1.


Assuntos
Sinaptotagmina I/genética , Sinaptotagmina I/fisiologia , Potenciais de Ação , Adolescente , Animais , Cálcio/metabolismo , Criança , Pré-Escolar , Fenômenos Eletrofisiológicos , Endocitose , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transtornos dos Movimentos/genética , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/metabolismo , Neurônios/metabolismo , Ratos , Transmissão Sináptica , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/fisiologia , Adulto Jovem
10.
Am J Med Genet A ; 176(2): 455-459, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29226580

RESUMO

KAT6B sequence variants have been identified in both patients with the Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) and in the genitopatellar syndrome (GPS). In SBBYSS, they were reported to affect mostly exons 16-18 of KAT6B, and the predicted mechanism of pathogenesis was haploinsufficiency or a partial loss of protein function. Truncating variants in KAT6B leading to GPS appear to cluster within the proximal portion of exon 18, associated with a dominant-negative effect of the mutated protein, most likely. Although SBBYSS and GPS have been initially considered allelic disorders with distinctive genetic and clinical features, there is evidence that they represent two ends of a spectrum of conditions referable as KAT6B-related disorders. We detected a de novo truncating variant within exon 7 of KAT6B in a 8-year-old female who presented with mild intellectual disability, facial dysmorphisms highly consistent with SBBYSS, and skeletal anomalies including exostosis, that are usually considered component manifestations of GPS. Following the clinical diagnosis driven by the striking facial phenotype, we analyzed the KAT6B gene by NGS techniques. The present report highlights the pivotal role of clinical genetics in avoiding clear-cut genotype-phenotype categories in syndromic forms of intellectual disability. In addition, it further supports the evidence that a continuum exists within the clinical spectrum of KAT6B-associated disorders.


Assuntos
Blefarofimose/genética , Hipotireoidismo Congênito/genética , Anormalidades Craniofaciais/genética , Cardiopatias Congênitas/genética , Histona Acetiltransferases/genética , Deficiência Intelectual/genética , Instabilidade Articular/genética , Rim/anormalidades , Patela/anormalidades , Transtornos Psicomotores/genética , Escroto/anormalidades , Anormalidades Urogenitais/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Alelos , Blefarofimose/fisiopatologia , Criança , Hipotireoidismo Congênito/fisiopatologia , Anormalidades Craniofaciais/fisiopatologia , Éxons , Fácies , Feminino , Estudos de Associação Genética , Haploinsuficiência/genética , Cardiopatias Congênitas/fisiopatologia , Humanos , Deficiência Intelectual/fisiopatologia , Instabilidade Articular/fisiopatologia , Rim/fisiopatologia , Mutação , Patela/fisiopatologia , Fenótipo , Transtornos Psicomotores/fisiopatologia , Escroto/fisiopatologia , Anormalidades Urogenitais/fisiopatologia
12.
Am J Med Genet A ; 170A(1): 24-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26768331

RESUMO

Opitz C trigonocephaly (or Opitz C syndrome, OTCS) and Bohring-Opitz syndrome (BOS or C-like syndrome) are two rare genetic disorders with phenotypic overlap. The genetic causes of these diseases are not understood. However, two genes have been associated with OTCS or BOS with dominantly inherited de novo mutations. Whereas CD96 has been related to OTCS (one case) and to BOS (one case), ASXL1 has been related to BOS only (several cases). In this study we analyze CD96 and ASXL1 in a group of 11 affected individuals, including 2 sibs, 10 of them were diagnosed with OTCS, and one had a BOS phenotype. Exome sequences were available on six patients with OTCS and three parent pairs. Thus, we could analyze the CD96 and ASXL1 sequences in these patients bioinformatically. Sanger sequencing of all exons of CD96 and ASXL1 was carried out in the remaining patients. Detailed scrutiny of the sequences and assessment of variants allowed us to exclude putative pathogenic and private mutations in all but one of the patients. In this patient (with BOS) we identified a de novo mutation in ASXL1 (c.2100dupT). By nature and location within the gene, this mutation resembles those previously described in other BOS patients and we conclude that it may be responsible for the condition. Our results indicate that in 10 of 11, the disease (OTCS or BOS) cannot be explained by small changes in CD96 or ASXL1. However, the cohort is too small to make generalizations about the genetic etiology of these diseases.


Assuntos
Antígenos CD/genética , Craniossinostoses/genética , Deficiência Intelectual/genética , Mutação/genética , Proteínas Repressoras/genética , Adolescente , Criança , Pré-Escolar , Craniossinostoses/patologia , Exoma/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Linhagem , Fenótipo , Prognóstico
13.
J Med Genet ; 52(12): 804-14, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26424144

RESUMO

BACKGROUND: The 17q21.31 deletion syndrome phenotype can be caused by either chromosome deletions or point mutations in the KANSL1 gene. To date, about 60 subjects with chromosome deletion and 4 subjects with point mutation in KANSL1 have been reported. Prevalence of chromosome deletions compared with point mutations, genotype-phenotype correlations and phenotypic variability have yet to be fully clarified. METHODS: We report genotype-phenotype correlations in 27 novel subjects with 17q21.31 deletion and in 5 subjects with KANSL1 point mutation, 3 of whom were not previously reported. RESULTS: The prevalence of chromosome deletion and KANSL1 mutation was 83% and 17%, respectively. All patients had similar clinical features, with the exception of macrocephaly, which was detected in 24% of patients with the deletion and 60% of those with the point mutation, and congenital heart disease, which was limited to 35% of patients with the deletion. A remarkable phenotypic variability was observed in both categories, mainly with respect to the severity of ID. Cognitive function was within normal parameters in one patient in each group. Craniosynostosis, subependymal heterotopia and optic nerve hypoplasia represent new component manifestations. CONCLUSIONS: In KANSL1 haploinsufficiency syndrome, chromosome deletions are greatly prevalent compared with KANSL1 mutations. The latter are sufficient in causing the full clinical phenotype. The degree of intellectual disability (ID) appears to be milder than expected in a considerable number of subjects with either chromosome deletion or KANSL1 mutation. Striking clinical criteria for enrolling patients into KANSL1 analysis include speech delay, distinctive facial dysmorphism, macrocephaly and friendly behaviour.


Assuntos
Anormalidades Múltiplas/genética , Proteínas Nucleares/genética , Síndrome de Smith-Magenis/genética , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Anormalidades Craniofaciais/genética , Feminino , Retardo do Crescimento Fetal/genética , Estudos de Associação Genética , Haploinsuficiência , Humanos , Lactente , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Convulsões/genética , Índice de Gravidade de Doença , Síndrome , Adulto Jovem
14.
Hum Mol Genet ; 22(23): 4748-55, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23847048

RESUMO

Mutations in the gene encoding fused-in-sarcoma (FUS) have been identified in a subset of patients with sporadic and familial amyotrophic lateral sclerosis (ALS). Variants in the 3' untranslated region (3'UTR) of FUS have also been reported in ALS patients, but their pathogenic role has not been assessed. We sequenced the whole 3'UTR of FUS in 420 ALS patients who were negative for mutations in the currently known ALS genes and in 480 ethnically matched controls. We detected four 3'UTR variants (c.*48 G>A, c.*59 G>A, c.*108 C>T and c.*110 G>A) in four sporadic and in one familial ALS patients compared with none in controls (P = 0.02).We investigated whether these variants impaired FUS expression in primary fibroblast cultures from three patients harbouring the c.*59 G>A, c.*108 C>T and c.*110 G>A variants, respectively. The pattern of FUS expression was also investigated in fibroblasts from one ALS patient with FUS R521C mutation, in two ALS patients without mutations in the known ALS genes and in four control individuals. By immunostaining and immunoblotting, large amounts of FUS were observed in both the cytoplasm and nuclei of mutant 3'UTR FUS fibroblasts. In FUS R521C mutant fibroblasts, we observed a slight increase of FUS in the cytoplasm associated with a remarkable loss of detection in nuclei. Our findings show that mutations in 3'UTR of FUS are overrepresented in ALS patients and result into translation de-regulation of FUS. Overexpression and mislocalization of wild-type FUS likely contribute to ALS pathogenesis in these cases.


Assuntos
Regiões 3' não Traduzidas , Esclerose Lateral Amiotrófica/genética , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Estudos de Casos e Controles , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Feminino , Regulação da Expressão Gênica , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Análise de Sequência de DNA , Adulto Jovem
16.
Am J Med Genet A ; 164A(10): 2557-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25123255

RESUMO

Mowat-Wilson syndrome (MWS) is characterized by moderate to severe intellectual disability and distinctive facial features in association with variable structural congenital anomalies/clinical features including congenital heart disease, Hirschsprung disease, hypospadias, agenesis of the corpus callosum, short stature, epilepsy, and microcephaly. Less common clinical features include ocular anomalies, craniosynostosis, mild intellectual disability, and choanal atresia. These cases may be more difficult to diagnose. In this report, we add 28 MWS patients with molecular confirmation of ZEB2 mutation, including seven with an uncommon presenting feature. Among the "unusual" patients, two patients had clinical features of charge syndrome including choanal atresia, coloboma, cardiac defects, genitourinary anomaly (1/2), and severe intellectual disability; two patients had craniosynostosis; and three patients had mild intellectual disability. Sixteen patients have previously-unreported mutations in ZEB2. Genotype-phenotype correlations were suggested in those with mild intellectual disability (two had a novel missense mutation in ZEB2, one with novel splice site mutation). This report increases the number of reported patients with MWS with unusual features, and is the first report of MWS in children previously thought to have CHARGE syndrome. These patients highlight the importance of facial gestalt in the accurate identification of MWS when less common features are present.


Assuntos
Síndrome CHARGE/diagnóstico , Craniossinostoses/diagnóstico , Face/anormalidades , Doença de Hirschsprung/diagnóstico , Deficiência Intelectual/diagnóstico , Microcefalia/diagnóstico , Anormalidades Múltiplas/genética , Adulto , Síndrome CHARGE/genética , Criança , Pré-Escolar , Craniossinostoses/genética , Fácies , Feminino , Estudos de Associação Genética/métodos , Doença de Hirschsprung/genética , Proteínas de Homeodomínio/genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Mutação/genética , Proteínas Repressoras/genética , Adulto Jovem , Homeobox 2 de Ligação a E-box com Dedos de Zinco
17.
Epilepsia ; 55(6): 849-57, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24738919

RESUMO

OBJECTIVE: Seizure disorder is one of the most relevant clinical manifestations in Wolf-Hirschhorn syndrome (WHS) and it acts as independent prognostic factor for the severity of intellectual disability (ID). LETM1, encoding a mitochondrial protein playing a role in K(+) /H(+) exchange and in Ca(2+) homeostasis, is currently considered the major candidate gene. However, whether haploinsufficiency limited to LETM1 is enough to cause epilepsy is still unclear. The main purpose of the present research is to define the 4p chromosome regions where genes for seizures reside. METHODS: Comparison of our three unusual 4p16.3 deletions with 13 literature reports. Array-comparative genomic hybridization (a-CGH). Real-time polymerase chain reaction (RT-PCR) on messanger RNA (mRNA) of LETM1 and CPLX1. Direct sequencing of LETM1. RESULTS: Three unusual 4p16.3 deletions were detected by array-CGH in absence of a obvious clinical diagnosis of WHS. Two of these, encompassing LETM1, were found in subjects who never had seizures. The deletions were interstitial, spanning 1.1 Mb with preservation of the terminal 1.77 Mb region in one case and 0.84 Mb with preservation of the terminal 1.07 Mb region in the other. The other deletion was terminal, affecting a 0.564 Mb segment, with preservation of LETM1, and it was associated with seizures and learning difficulties. Upon evaluating our patients along with literature reports, we noted that six of eight subjects with terminal 4p deletions preserving LETM1 had seizures, whereas seven of seven with interstitial deletions including LETM1 and preserving the terminal 1 Mb region on 4p did not. An additional chromosome region for seizures is suggested, falling within the terminal 1.5 Mb on 4p, not including LETM1. SIGNIFICANCE: We consider that haploinsufficiency not limited to LETM1 but including other genes acts as a risk factor for the WHS-associated seizure disorder, according to a comorbidity model of pathogenesis. Additional candidate genes reside in the terminal 1.5 Mb region on 4p, most likely distal to LETM1. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.


Assuntos
Cromossomos Humanos Par 4/genética , Deleção de Genes , Convulsões/genética , Síndrome de Wolf-Hirschhorn/genética , Adolescente , Proteínas de Ligação ao Cálcio/genética , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
18.
Am J Med Genet A ; 161A(11): 2890-3, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24127197

RESUMO

We describe a family in which four individuals (the mother and three children) presented with an overlapping phenotype of minor physical anomalies and intellectual disability. Four previously unreported copy number variants were found inherited either from the affected mother or from the healthy father, consisting of a 3p22.3p22.2 deletion (2.5 Mb), a 3p24.3 deletion (0.55 Mb), a 6q22.31 duplication (0.74 Mb), all maternally inherited, and an 18q11.2 duplication (0.276 Mb) which was paternally inherited. The deletions on chromosome 3 were both found to segregate with the disease. However, being the 0.55 Mb deleted segment on 3p24.3 devoid of genes, we considered that the 2.5 Mb deletion on 3p22.3p22.2 acts as major pathogenic rearrangement in this condition. Among the transcribed genes residing in this interval, ARPP21 and CLASP2 are proposed as good candidate genes on the basis of their functional properties. A co-morbidity role for the other small rearrangements detected in the affected individuals in association with the 3p22.3p22.2 deletion is also suggested, according to a second-side model of pathogenesis.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 3 , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Proteínas Associadas aos Microtúbulos/genética , Fosfoproteínas/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Fácies , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Síndrome , Adulto Jovem
19.
Eur J Hum Genet ; 31(6): 648-653, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36797464

RESUMO

Loss-of-function variants in CHAMP1 were recently described as cause of a neurodevelopmental disorder characterized by intellectual disability (ID), autism, and distinctive facial characteristics. By exome sequencing (ES), we identified a truncating variant in CHAMP1, c.1858A > T (p.Lys620*), in a patient who exhibited a similar phenotype of severe ID and dysmorphisms. Whether haploinsufficiency or a dominant negative effect is the underlying pathomechanism in these cases is a question that still needs to be addressed. By array-CGH, we detected a 194 kb deletion in 13q34 encompassing CHAMP1, CDC16 and UPF3, in another patient who presented with borderline neurodevelopmental impairment and with no dysmorphisms. In a further patient suffering from early onset refractory seizures, we detected by ES a missense variant in CHAMP1, c.67 G > A (p.Gly23Ser). Genomic abnormalities were all de novo in our patients. We reviewed the clinical and the genetic data of patients reported in the literature with: loss-of-function variants in CHAMP1 (total 40); chromosome 13q34 deletions ranging from 1.1 to 4 Mb (total 7) and of the unique patient with a missense variant. We could infer that loss-of-function variants in CHAMP1 cause a homogeneous phenotype with severe ID, autism spectrum disorders (ASD) and highly distinctive facial characteristics through a dominant negative effect. CHAMP1 haploinsufficiency results in borderline ID with negligible consequences on the quality of life. Missense variants give rise to a severe epileptic encephalopathy through gain-of-function mechanism, most likely. We tentatively define for the first time distinct categories among the CHAMP1-related disorder on the basis of pathomechanisms.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Qualidade de Vida , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Transtorno Autístico/genética , Deleção Cromossômica , Fenótipo , Genômica , Proteínas Cromossômicas não Histona/genética , Fosfoproteínas/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-35876065

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease caused by a complex interaction of genetic and environmental factors. Recently, a polymorphic intronic CA repeat in STMN2 gene has been proposed as risk factor for ALS. The presence of long/long CA genotype, especially if one allele had 24 CA, was reported to be significantly associated with the disease in a cohort of sporadic ALS patients. We tested an Italian cohort of 366 ALS patients and 353 healthy controls and we found no association between CA length and ALS risk.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/genética , Fatores de Risco , Genótipo , Itália , Estatmina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa