Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 546(7656): 148-152, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538728

RESUMO

The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.


Assuntos
Evolução Molecular , Flores/genética , Flores/fisiologia , Genoma de Planta/genética , Helianthus/genética , Helianthus/metabolismo , Óleos de Plantas/metabolismo , Aclimatação/genética , Duplicação Gênica/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Genômica , Helianthus/classificação , Análise de Sequência de DNA , Estresse Fisiológico/genética , Óleo de Girassol , Transcriptoma/genética
2.
BMC Plant Biol ; 17(1): 167, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29052528

RESUMO

BACKGROUND: Phoma macdonaldii has been reported as the causal agent of black stem disease (BS) and premature ripening (PR) on sunflower. PR is considered as the most widespread and detrimental disease on sunflower in France. While genetic variability and QTL mapping for partial resistance of sunflower to stem, collar and roots attacks have been reported on plantlets in controlled conditions, this work aims to describe the genetic variability in a subset of a sunflower lines, and for the first time to map QTL involved in PR resistance evaluated in field conditions using controlled inoculation. RESULTS: An efficient and reliable method for inoculation used in field experiments induced stem base necrosis on up to 98% of all plants. A significant genetic variability for PR resistance in the field was detected among the 20 inbred lines of the core collection tested across the two years. For QTL mapping, the PR resistance evaluation was performed on two recombinant inbred lines (RIL) populations derived from the crosses XRQxPSC8 and FUxPAZ2 in two different years. QTL analyses were based on a newly developed consensus genetic map comprising 1007 non-redundant molecular markers. In each of the two RIL populations, different QTL involved in PR partial sunflower resistance were detected. The most significant QTL were detected 49 days post infection (DPI) on LG10 (LOD 7.7) and on LG7 (LOD 12.1) in the XRQxPSC8 and FUxPAZ2 RIL population, respectively. In addition, different QTL were detected on both populations for PR resistance measured between 14 and 35 DPI. In parallel, the incidence of natural attack of P. macdonaldii resulting in BS disease was recorded, showing that in these populations, the genetic of resistance to both diseases is not governed by the same factors. CONCLUSION: This work provides the first insights on the genetic architecture of sunflower PR resistance in the field. Moreover, the separate studies of symptoms on different organs and in time series allowed the identification of a succession of genetic components involved in the sunflower resistance to PR and BS diseases caused by Phoma macdonaldii along the development of the {plant * pathogen} interaction.


Assuntos
Ascomicetos/patogenicidade , Helianthus/microbiologia , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Caules de Planta/microbiologia , Ascomicetos/fisiologia , Resistência à Doença/genética , Helianthus/genética , Raízes de Plantas/microbiologia , Locos de Características Quantitativas/genética
3.
New Phytol ; 203(2): 685-696, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24786523

RESUMO

Gene regulatory networks (GRNs) govern phenotypic adaptations and reflect the trade-offs between physiological responses and evolutionary adaptation that act at different time-scales. To identify patterns of molecular function and genetic diversity in GRNs, we studied the drought response of the common sunflower, Helianthus annuus, and how the underlying GRN is related to its evolution. We examined the responses of 32,423 expressed sequences to drought and to abscisic acid (ABA) and selected 145 co-expressed transcripts. We characterized their regulatory relationships in nine kinetic studies based on different hormones. From this, we inferred a GRN by meta-analyses of a Gaussian graphical model and a random forest algorithm and studied the genetic differentiation among populations (FST ) at nodes. We identified two main hubs in the network that transport nitrate in guard cells. This suggests that nitrate transport is a critical aspect of the sunflower physiological response to drought. We observed that differentiation of the network genes in elite sunflower cultivars is correlated with their position and connectivity. This systems biology approach combined molecular data at different time-scales and identified important physiological processes. At the evolutionary level, we propose that network topology could influence responses to human selection and possibly adaptation to dry environments.


Assuntos
Redes Reguladoras de Genes , Helianthus/genética , Modelos Genéticos , Ácido Abscísico/genética , Algoritmos , Evolução Biológica , Secas , Regulação da Expressão Gênica de Plantas , Helianthus/fisiologia , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
4.
Plant Cell Environ ; 36(12): 2175-89, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23639099

RESUMO

Plant or soil water status is required in many scientific fields to understand plant responses to drought. Because the transcriptomic response to abiotic conditions, such as water deficit, reflects plant water status, genomic tools could be used to develop a new type of molecular biomarker. Using the sunflower (Helianthus annuus L.) as a model species to study the transcriptomic response to water deficit both in greenhouse and field conditions, we specifically identified three genes that showed an expression pattern highly correlated to plant water status as estimated by the pre-dawn leaf water potential, fraction of transpirable soil water, soil water content or fraction of total soil water in controlled conditions. We developed a generalized linear model to estimate these classical water status indicators from the expression levels of the three selected genes under controlled conditions. This estimation was independent of the four tested genotypes and the stage (pre- or post-flowering) of the plant. We further validated this gene expression biomarker under field conditions for four genotypes in three different trials, over a large range of water status, and we were able to correct their expression values for a large diurnal sampling period.


Assuntos
Biomarcadores/metabolismo , Meio Ambiente , Regulação da Expressão Gênica de Plantas , Helianthus/genética , Helianthus/fisiologia , Água/fisiologia , Ritmo Circadiano/genética , Desidratação , Secas , Perfilação da Expressão Gênica , Genes de Plantas/genética , Estudos de Associação Genética , Genótipo , Cinética , Modelos Lineares , Transpiração Vegetal/fisiologia , Reprodutibilidade dos Testes , Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa