Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 13: 863831, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547740

RESUMO

The emergence of SARS-CoV-2 variants that escape from immune neutralization are challenging vaccines and antibodies developed to stop the COVID-19 pandemic. Thus, it is important to establish therapeutics directed toward multiple or specific SARS-CoV-2 variants. The envelope spike (S) glycoprotein of SARS-CoV-2 is the key target of neutralizing antibodies (Abs). We selected a panel of nine nanobodies (Nbs) from dromedary camels immunized with the receptor-binding domain (RBD) of the S, and engineered Nb fusions as humanized heavy chain Abs (hcAbs). Nbs and derived hcAbs bound with subnanomolar or picomolar affinities to the S and its RBD, and S-binding cross-competition clustered them in two different groups. Most of the hcAbs hindered RBD binding to its human ACE2 (hACE2) receptor, blocked cell entry of viruses pseudotyped with the S protein and neutralized SARS-CoV-2 infection in cell cultures. Four potent neutralizing hcAbs prevented the progression to lethal SARS-CoV-2 infection in hACE2-transgenic mice, demonstrating their therapeutic potential. Cryo-electron microscopy identified Nb binding epitopes in and out the receptor binding motif (RBM), and showed different ways to prevent virus binding to its cell entry receptor. The Nb binding modes were consistent with its recognition of SARS-CoV-2 RBD variants; mono and bispecific hcAbs efficiently bound all variants of concern except omicron, which emphasized the immune escape capacity of this latest variant.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Animais , Microscopia Crioeletrônica , Epitopos/química , Humanos , Camundongos , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
2.
Front Med (Lausanne) ; 9: 1058455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507540

RESUMO

Triple-negative breast cancer (TNBC) is characterized by aggressiveness and high rates of metastasis. The identification of relevant biomarkers is crucial to improve outcomes for TNBC patients. Membrane type 1-matrix metalloproteinase (MT1-MMP) could be a good candidate because its expression has been reported to correlate with tumor malignancy, progression and metastasis. Moreover, single-domain variable regions (VHHs or Nanobodies) derived from camelid heavy-chain-only antibodies have demonstrated improvements in tissue penetration and blood clearance, important characteristics for cancer imaging. Here, we have developed a nanobody-based PET imaging strategy for TNBC detection that targets MT1-MMP. A llama-derived library was screened against the catalytic domain of MT1-MMP and a panel of specific nanobodies were identified. After a deep characterization, two nanobodies were selected to be labeled with gallium-68 (68Ga). ImmunoPET imaging with both ([68Ga]Ga-NOTA-3TPA14 and [68Ga]Ga-NOTA-3CMP75) in a TNBC mouse model showed precise tumor-targeting capacity in vivo with high signal-to-background ratios. (68Ga)Ga-NOTA-3CMP75 exhibited higher tumor uptake compared to (68Ga)Ga-NOTA-3TPA14. Furthermore, imaging data correlated perfectly with the immunohistochemistry staining results. In conclusion, we found a promising candidate for nanobody-based PET imaging to be further investigated as a diagnostic tool in TNBC.

3.
Commun Biol ; 4(1): 1169, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34621006

RESUMO

ssDNA recombineering has been exploited to hyperdiversify genomically-encoded nanobodies displayed on the surface of Escherichia coli for originating new binding properties. As a proof-of-principle a nanobody recognizing the antigen TirM from enterohaemorrhagic E. coli (EHEC) was evolved towards the otherwise not recognized TirM antigen from enteropathogenic E. coli (EPEC). To this end, E. coli cells displaying this nanobody fused to the intimin outer membrane-bound domain were subjected to multiple rounds of mutagenic oligonucleotide recombineering targeting the complementarity determining regions (CDRs) of the cognate VHH gene sequence. Binders to the EPEC-TirM were selected upon immunomagnetic capture of bacteria bearing active variants and nanobodies identified with a new ability to strongly bind the new antigen. The results highlight the power of combining evolutionary properties of bacteria in vivo with oligonucleotide synthesis in vitro for the sake of focusing diversification to specific segments of a gene (or protein thereof) of interest.


Assuntos
Anticorpos Antibacterianos/imunologia , DNA Bacteriano/genética , DNA de Cadeia Simples/genética , Escherichia coli/imunologia , Anticorpos de Domínio Único/imunologia , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo
4.
Sci Rep ; 11(1): 3318, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558635

RESUMO

Despite unprecedented global efforts to rapidly develop SARS-CoV-2 treatments, in order to reduce the burden placed on health systems, the situation remains critical. Effective diagnosis, treatment, and prophylactic measures are urgently required to meet global demand: recombinant antibodies fulfill these requirements and have marked clinical potential. Here, we describe the fast-tracked development of an alpaca Nanobody specific for the receptor-binding-domain (RBD) of the SARS-CoV-2 Spike protein with potential therapeutic applicability. We present a rapid method for nanobody isolation that includes an optimized immunization regimen coupled with VHH library E. coli surface display, which allows single-step selection of Nanobodies using a simple density gradient centrifugation of the bacterial library. The selected single and monomeric Nanobody, W25, binds to the SARS-CoV-2 S RBD with sub-nanomolar affinity and efficiently competes with ACE-2 receptor binding. Furthermore, W25 potently neutralizes SARS-CoV-2 wild type and the D614G variant with IC50 values in the nanomolar range, demonstrating its potential as antiviral agent.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos/genética , COVID-19/imunologia , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Animais , COVID-19/virologia , Camelídeos Americanos/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Imunização , Masculino , Testes de Neutralização , Biblioteca de Peptídeos , Ligação Proteica/genética , SARS-CoV-2/química , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Transfecção
5.
PLoS One ; 8(9): e75126, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086454

RESUMO

Screening of antibody (Ab) libraries by direct display on the surface of E. coli cells is hampered by the presence of the outer membrane (OM). In this work we demonstrate that the native ß-domains of EhaA autotransporter and intimin, two proteins from enterohemorrhagic E. coli O157:H7 (EHEC) with opposite topologies in the OM, are effective systems for the display of immune libraries of single domain Abs (sdAbs) from camelids (nanobodies or VHH) on the surface of E. coli K-12 cells and for the selection of high affinity sdAbs using magnetic cell sorting (MACS). We analyzed the capacity of EhaA and intimin ß-domains to display individual sdAbs and sdAb libraries obtained after immunization with the extracellular domain of the translocated intimin receptor from EHEC (TirM(EHEC)). We demonstrated that both systems displayed functional sdAbs on the surface of E. coli cells with little proteolysis and cellular toxicity, although E. coli cells displaying sdAbs with the ß-domain of intimin showed higher antigen-binding capacity. Both E. coli display libraries were screened for TirM(EHEC) binding clones by MACS. High affinity binders were selected by both display systems, although more efficiently with the intimin ß-domain. The specificity of the selected clones against TirM(EHEC) was demonstrated by flow cytometry of E. coli cells, along with ELISA and surface plasmon resonance with purified sdAbs. Finally, we employed the E. coli cell display systems to provide an estimation of the affinity of the selected sdAb by flow cytometry analysis under equilibrium conditions.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Camelus/imunologia , Escherichia coli O157/metabolismo , Biblioteca de Peptídeos , Anticorpos de Domínio Único/metabolismo , Adesinas Bacterianas/metabolismo , Adesinas de Escherichia coli/metabolismo , Animais , Especificidade de Anticorpos , Western Blotting , Ensaio de Imunoadsorção Enzimática , Proteínas de Escherichia coli/metabolismo , Citometria de Fluxo , Oligonucleotídeos/genética , Plasmídeos/genética , Anticorpos de Domínio Único/química , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa