Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Science ; 380(6640): 77-81, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37023184

RESUMO

Feshbach resonances are fundamental to interparticle interactions and become particularly important in cold collisions with atoms, ions, and molecules. In this work, we present the detection of Feshbach resonances in a benchmark system for strongly interacting and highly anisotropic collisions: molecular hydrogen ions colliding with noble gas atoms. The collisions are launched by cold Penning ionization, which exclusively populates Feshbach resonances that span both short- and long-range parts of the interaction potential. We resolved all final molecular channels in a tomographic manner using ion-electron coincidence detection. We demonstrate the nonstatistical nature of the final-state distribution. By performing quantum scattering calculations on ab initio potential energy surfaces, we show that the isolation of the Feshbach resonance pathways reveals their distinctive fingerprints in the collision outcome.

2.
Nat Commun ; 11(1): 3553, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678097

RESUMO

Observation of molecular dynamics with quantum state resolution is one of the major challenges in chemical physics. Complete characterization of collision dynamics leads to the microscopic understanding and unraveling of different quantum phenomena such as scattering resonances. Here we present an experimental approach for observing molecular dynamics involving neutral particles and ions that is capable of providing state-to-state mapping of the dynamics. We use Penning ionization reaction between argon and metastable helium to generate argon ion and ground state helium atom pairs at separation of several angstroms. The energy of an ejected electron carries the information about the initial electronic state of an ion. The coincidence detection of ionic products provides a state resolved description of the post-ionization ion-neutral dynamics. We demonstrate that correlation between the electron and ion energy spectra enables us to directly observe the spin-orbit excited Feshbach resonance state of HeAr+. We measure the lifetime of the quasi-bound HeAr+ A2 state and discuss possible applications of our method.

3.
Nat Chem ; 7(8): 646-52, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26201741

RESUMO

The ability to guide the assembly of nanosized objects reversibly with external stimuli, in particular light, is of fundamental importance, and it contributes to the development of applications as diverse as nanofabrication and controlled drug delivery. However, all the systems described to date are based on nanoparticles (NPs) that are inherently photoresponsive, which makes their preparation cumbersome and can markedly hamper their performance. Here we describe a conceptually new methodology to assemble NPs reversibly using light that does not require the particles to be functionalized with light-responsive ligands. Our strategy is based on the use of a photoswitchable medium that responds to light in such a way that it modulates the interparticle interactions. NP assembly proceeds quantitatively and without apparent fatigue, both in solution and in gels. Exposing the gels to light in a spatially controlled manner allowed us to draw images that spontaneously disappeared after a specific period of time.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa