Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 129(16): 2303-2307, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28196793

RESUMO

Drug-induced readthrough over premature stop codons (PTCs) is a potentially attractive therapy for genetic disorders, but a wide outcome variability has been observed. Through expression studies, we investigated the responsiveness to the readthrough-inducing drug geneticin of 11 rationally selected factor IX (FIX) nonsense mutations, present in 70% (324/469) of hemophilia B (HB) patients with PTCs. Among the predicted readthrough-permissive TGA variants, only 2 (p.W240X and p.R384X) responded with a remarkable rescue of FIX activity. The amounts of rescued full-length FIX protein for the p.W240X (∼9% of recombinant FIX [rFIX]-wild-type [WT]) slightly exceeded activity (5.2 ± 0.6%). FIX antigen for the p.R384X (1.9 ± 0.3%) was remarkably lower than activity (7.5 ± 0.7%). Data indicate novel specific mechanisms producing functional rescue: (1) prevalent reinsertion of the authentic residue (tryptophan), reverting the nonsense effects for the p.W240X, and (2) gain-of-function for the p.R384X, supported by the fourfold increased activity of the most probable readthrough-mediated missense variant (rFIX-R384W). For most PTCs, impaired secretion/function produced by readthrough-mediated amino acid substitutions prevented a significant functional rescue, which requires combinations of favorable FIX messenger RNA (mRNA) sequence and protein features. This rational approach, applicable to other coagulation disorders, helps with interpreting the poor response reported in the few investigated HB patients, and identifies candidate patients eligible for treatment.


Assuntos
Códon sem Sentido , Fator IX/genética , Gentamicinas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Substituição de Aminoácidos , Arginina/genética , Arginina/metabolismo , Fator IX/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Hemofilia B/genética , Hemofilia B/metabolismo , Hemofilia B/patologia , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triptofano/genética , Triptofano/metabolismo
2.
Haematologica ; 97(5): 705-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22180436

RESUMO

We report 2 asymptomatic homozygotes for the nonsense p.R462X mutation affecting the carboxy-terminus of coagulation factor VII (FVII, 466 aminoacids). FVII levels of 3-5% and 2.7 ± 0.4% were found in prothrombin time-based and activated factor X (FXa) generation assays with human thromboplastins. Noticeably, FVII antigen levels were barely detectable (0.7 ± 0.2%) which suggested a gain-of-function effect. This effect was more pronounced with bovine thromboplastin (4.8 ± 0.9%) and disappeared with rabbit thromboplastin (0.7 ± 0.2%). This suggests that the mutation influences tissue factor/FVII interactions. Whereas the recombinant rFVII-462X variant confirmed an increase in specific activity (~400%), a panel of nonsense (p.P466X, p.F465X, p.P464X, p.A463X) and missense (p.R462A, p.R462Q, p.R462W) mutations of the FVII carboxy-terminus resulted in reduced secretion but normal specific activity. These data provide evidence for counteracting pleiotropic effects of the p.R462X mutation, which explains the asymptomatic FVII deficiency, and contributes to our understanding of the role of the highly variable carboxy-terminus of coagulation serine proteases.


Assuntos
Coagulação Sanguínea/genética , Códon sem Sentido/genética , Deficiência do Fator VII/genética , Deficiência do Fator VII/metabolismo , Fator VII/genética , Fator VII/metabolismo , Animais , Bovinos , Criança , Ensaio de Imunoadsorção Enzimática , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Tempo de Protrombina , Coelhos , Tromboplastina/metabolismo
3.
Front Neurol ; 9: 245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731736

RESUMO

BACKGROUND: Factor XII (FXII) activation initiates the intrinsic (contact) coagulation pathway. It has been recently suggested that FXII could act as an autoimmunity mediator in multiple sclerosis (MS). FXII depositions nearby dentritic cells were detected in the central nervous system of MS patients and increased FXII activity has been reported in plasma of relapsing remitting and secondary progressive MS patients. FXII inhibition has been proposed to treat MS. OBJECTIVE: To investigate in MS patients multiple FXII-related variables, including the circulating amount of protein, its pro-coagulant function, and their variation over time. To explore kinetic activation features of FXII in thrombin generation (TG). METHODS: In plasma from 74 MS patients and 49 healthy subjects (HS), FXII procoagulant activity (FXII:c) and FXII protein (FXII:Ag) levels were assessed. Their ratio (FXII:ratio) values were derived. Intrinsic TG was evaluated by different triggers. RESULTS: Higher FXII:Ag levels (p = 0.003) and lower FXII:ratio (p < 0.001) were detected in MS patients compared with HS. FXII variables were highly correlated over four time points, which supports investigation of FXII contribution to disease phenotype and progression. A significant difference over time was detected for FXII:c (p = 0.031). In patients selected for the lowest FXII:ratio, TG triggered by ellagic acid showed a trend in lower endogenous thrombin potential (ETP) in MS patients compared with HS (p = 0.042). Intrinsic triggering of TG by nucleic acid addition produced longer time parameters in patients than in HS and substantially increased ETP in MS patients (p = 0.004) and TG peak height in HS (p = 0.008). Coherently, lower FXII:ratio and longer lag time (p = 0.02) and time to peak (p = 0.007) point out a reduced response of FXII to activation in part of MS patients. CONCLUSION: In MS patients, factor-specific and modified global assays suggest the presence of increased FXII protein level and reduced function within the intrinsic coagulation pathway. These novel findings support further investigation by multiple approaches of FXII contribution to disease phenotype and progression.

4.
Mol Ther Nucleic Acids ; 5(10): e370, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27701399

RESUMO

In cellular models we have demonstrated that a unique U1snRNA targeting an intronic region downstream of a defective exon (Exon-specific U1snRNA, ExSpeU1) can rescue multiple exon-skipping mutations, a relevant cause of genetic disease. Here, we explored in mice the ExSpeU1 U1fix9 toward two model Hemophilia B-causing mutations at the 5' (c.519A > G) or 3' (c.392-8T > G) splice sites of F9 exon 5. Hydrodynamic injection of wt-BALB/C mice with plasmids expressing the wt and mutant (hFIX-2G5'ss and hFIX-8G3'ss) splicing-competent human factor IX (hFIX) cassettes resulted in the expression of hFIX transcripts lacking exon 5 in liver, and in low plasma levels of inactive hFIX. Coinjection of U1fix9, but not of U1wt, restored exon inclusion of variants and in the intrinsically weak FIXwt context. This resulted in appreciable circulating hFIX levels (mean ± SD; hFIX-2G5'ss, 1.0 ± 0.5 µg/ml; hFIX-8G3'ss, 1.2 ± 0.3 µg/ml; and hFIXwt, 1.9 ± 0.6 µg/ml), leading to a striking shortening (from ~100 seconds of untreated mice to ~80 seconds) of FIX-dependent coagulation times, indicating a hFIX with normal specific activity. This is the first proof-of-concept in vivo that a unique ExSpeU1 can efficiently rescue gene expression impaired by distinct exon-skipping variants, which extends the applicability of ExSpeU1s to panels of mutations and thus cohort of patients.

5.
Curr Pharm Des ; 22(11): 1449-59, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26654441

RESUMO

Factor XIII (FXIII) is a key molecule in the field of blood coagulation and in the last decades it has weakened attention within the field of angiogenesis and tissue repair. FXIII positively influences wound healing in several tissues by exerting multiple plasma and cellular functions. In the field of haemostasis, FXIII cross-links the neo formed fibrin fibers and supports platelet adhesion to the damaged sub-endothelium warranting a solid architecture. In addition, the pro-angiogenic functions of FXIII are directed by the interaction of vascular endothelial growth factor receptor 2 (VEGFR2) and the integrin αVß3, on the cell membrane, favouring an important step in the formation of granulation tissue at the wound site for optimal tissue healing. Conversely, the same mechanisms could lead to undesired increased neovascularisation, for example in inflammatory bowel disease or in the retinal degenerative pathologies. The classical symptoms of FXIII deficiency span from intracranial haemorrhage to delay bleeding or the staying of chronic wounds in the skin including impaired mucosal healing. In this view, FXIII bridges primary haemostasis, coagulation and definite tissue healing. Another important recently discovered function ascribed to FXIII is its ability to limit bacterial spreading from the lesion by incorporating specific macromolecules addressed to cellular infiltration, favouring in turn cell migration and survival, as observed also in fibrin-heart cultures for stem cell recruitment. In the field of the novel prognostic biomarkers, the monitoring of the residual circulating FXIII level during acute myocardial infarction has been considered predictive of the post-myocardial infarction healing. Accordingly, adequate FXIII levels can drive and predict the prognosis of complex diseases and the outcome of the associated therapies or interventions. In addition, peculiar pharmacogenetics aspects of the FXIII gene are of extraordinary interest. The present review accounts for the recognized role of FXIII in the healing process and gives some examples on how to use it as prognostic biological/ molecular marker or as potential tailored therapeutic molecule in complex diseases.


Assuntos
Deficiência do Fator XIII/tratamento farmacológico , Deficiência do Fator XIII/genética , Fator XIIIa/genética , Fator XIIIa/uso terapêutico , Farmacogenética , Animais , Humanos
6.
Thromb Haemost ; 114(1): 123-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25947356

RESUMO

After acute myocardial infarction (MI) the damaged heart has to be repaired. Factor XIII (FXIII) is considered a key molecule in promoting heart healing. FXIII deficiency was associated to cardiac rupture and anomalous remodelling in MI. During MI, FXIII contributes firstly to the intracoronary thrombus formation and shortly after to heal the myocardial lesion. To quantify the real contribution of FXIII in this process, and to explore its possible prognostic role, we monitored the FXIII-A subunit levels in 350 acute MI patients during the first six days (d0-d5) plus a control at 30-60 days (d30). A one-year follow-up was performed for all the patients. A transient drop in the FXIII-A mean level was noted in the whole cohort of patients (FXIII-Ad0 99.48 ± 30.5 vs FXIII-Ad5 76.51 ± 27.02; p< 0.0001). Interestingly, those who developed post-MI heart failure showed the highest drop (FXIII-Ad5 52.1 ± 25.2) and they already presented with low levels at recruitment. Similarly, those who died showed the same FXIII-A dynamic (FXIII-Ad5 54.0 ± 22.5). Conversely, patients who remained free of major adverse cardiac events, had lower consuming (FXIII-Ad0 103.6 ± 29.1 vs FXIII-Ad5 84.4 ± 24.5; p< 0.0001). Interestingly, the FXIII-A drop was independent from the amount of injury assessed by TnT and CKMB levels. The survival analysis ascribed an increased probability of early death or heart failure inversely related to FXIII-A quartiles (FXIII-A25th< 59.5 %; hazard ratio 4.25; 2.2-5.1; p< 0.0001). Different FXIII-A dynamics and levels could be utilised as early prognostic indicators during acute MI, revealing the individual potential to heal and suggesting tailored treatments to avoid heart failure or its extreme consequence.


Assuntos
Fator XIIIa/metabolismo , Infarto do Miocárdio/sangue , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Casos e Controles , Creatina Quinase Forma MB/sangue , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/etiologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/mortalidade , Infarto do Miocárdio/terapia , Valor Preditivo dos Testes , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento , Troponina T/sangue , Cicatrização
7.
FEBS Lett ; 587(19): 3249-53, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23994528

RESUMO

The interplay between impaired protein biosynthesis and/or function caused by missense mutations, particularly in relation to specific protein regions, has been poorly investigated. As model we chose the severe p.Y450C mutation in the carboxyl-terminal region of coagulation factor IX (FIX) and, by expression of a panel of recombinant variants, demonstrated the key role of the tyrosine phenyl group for both FIX secretion and coagulant activity. Comparison among highly homologous coagulation serine proteases indicate that additive or compensatory pleiotropic effects on secretion and function by carboxyl-terminal mutations produce life-threatening or mild phenotypes in the presence of similarly reduced protein amounts.


Assuntos
Fator IX/genética , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA , Fator IX/química , Fator IX/metabolismo , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa