Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Oncogene ; 26(28): 4115-23, 2007 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-17213805

RESUMO

Aberrant expression of the human homeobox-containing proto-oncogene TLX1/HOX11 inhibits hematopoietic differentiation programs in a number of murine model systems. Here, we report the establishment of a murine erythroid progenitor cell line, iEBHX1S-4, developmentally arrested by regulatable TLX1 expression. Extinction of TLX1 expression released the iEBHX1S-4 differentiation block, allowing erythropoietin-dependent acquisition of erythroid markers and hemoglobin synthesis. Coordinated activation of erythroid transcriptional networks integrated by the acetyltransferase co-activator CREB-binding protein (CBP) was suggested by bioinformatic analysis of the upstream regulatory regions of several conditionally induced iEBHX1S-4 gene sets. In accord with this notion, CBP-associated acetylation of GATA-1, an essential regulator of erythroid differentiation, increased concomitantly with TLX1 downregulation. Coimmunoprecipitation experiments and glutathione-S-transferase pull-down assays revealed that TLX1 directly binds to CBP, and confocal laser microscopy demonstrated that the two proteins partially colocalize at intranuclear sites in iEBHX1S-4 cells. Notably, the distribution of CBP in conditionally blocked iEBHX1S-4 cells partially overlapped with chromatin marked by a repressive histone methylation pattern, and downregulation of TLX1 coincided with exit of CBP from these heterochromatic regions. Thus, we propose that TLX1-mediated differentiation arrest may be achieved in part through a mechanism that involves redirection of CBP and/or its sequestration in repressive chromatin domains.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Proteínas de Homeodomínio/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Acetilação , Animais , Camundongos , Proto-Oncogene Mas , Regulação para Cima
2.
Data Brief ; 8: 520-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27366785

RESUMO

In this dataset we integrated figures comparing leaf number and rosette diameter in three Arabidopsis FT overexpressor lines (AtFTOE) driven by KNAT1 promoter, "A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis" [5], vs Wild Type (WT) Arabidopsis plats. Also, presented in the tables are some transcriptomic data obtained by RNA-seq Illumina HiSeq from rosette leaves of Arabidopsis plants of AtFTOE 2.1 line vs WT with accession numbers SRR2094583 and SRR2094587 for AtFTOE replicates 1-3 and AtWT for control replicates 1-2 respectively. Raw data of paired-end sequences are located in the public repository of the National Center for Biotechnology Information of the National Library of Medicine, National Institutes of Health, United States of America, Bethesda, MD, USA as Sequence Read Archive (SRA). Performed analyses of differential expression genes are visualized by Mapman and presented in figures. "Transcriptomic analysis of Arabidopsis overexpressing flowering locus T driven by a meristem-specific promoter that induces early flowering" [2], described the interpretation and discussion of the obtained data.

3.
Gene ; 587(2): 120-31, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27154816

RESUMO

Here we analyzed in leaves the effect of FT overexpression driven by meristem-specific KNAT1 gene homolog of Arabidopsis thaliana (Lincoln et al., 1994; Long et al., 1996) on the transcriptomic response during plant development. Our results demonstrated that meristematic FT overexpression generates a phenotype with an early flowering independent of photoperiod when compared with wild type (WT) plants. Arabidopsis FT-overexpressor lines (AtFTOE) did not show significant differences compared with WT lines neither in leaf number nor in rosette diameter up to day 21, when AtFTOE flowered. After this period AtFTOE plants started flower production and no new rosette leaves were produced. Additionally, WT plants continued on vegetative stage up to day 40, producing 12-14 rosette leaves before flowering. Transcriptomic analysis of rosette leaves studied by sequencing Illumina RNA-seq allowed us to determine the differential expression in mature leaf rosette of 3652 genes, being 626 of them up-regulated and 3026 down-regulated. Overexpressed genes related with flowering showed up-regulated transcription factors such as MADS-box that are known as flowering markers in meristem and which overexpression has been related with meristem identity preservation and the transition from vegetative to floral stage. Genes related with sugar transport have shown a higher demand of monosaccharides derived from the hydrolysis of sucrose to glucose and probably fructose, which can also be influenced by reproductive stage of AtFTOE plants.


Assuntos
Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Transporte Biológico , Metabolismo dos Carboidratos , Flores/crescimento & desenvolvimento , Ontologia Genética , Meristema/metabolismo
4.
Cytogenet Genome Res ; 110(1-4): 333-41, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16093685

RESUMO

The evolutionary implications of transposable element (TE) influences on gene regulation are explored here. An historical perspective is presented to underscore the importance of TE influences on gene regulation with respect to both the discovery of TEs and the early conceptualization of their potential impact on host genome evolution. Evidence that points to a role for TEs in host gene regulation is reviewed, and comparisons between genome sequences are used to demonstrate the fact that TEs are particularly lineage-specific components of their host genomes. Consistent with these two properties of TEs, regulatory effects and evolutionary specificity, human-mouse genome wide sequence comparisons reveal that the regulatory sequences that are contributed by TEs are exceptionally lineage specific. This suggests a particular mechanism by which TEs may drive the diversification of gene regulation between evolutionary lineages.


Assuntos
Elementos de DNA Transponíveis , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Sequência de Bases , Genoma , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa