Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649478

RESUMO

The aim of this study was to investigate the effect of aging and resistance training with a moderate load on the size and mechanical properties of the patellar (PT) and Achilles tendon (AT) and their associated aponeuroses; medial gastrocnemius (MG) and vastus lateralis (VL). Young (Y55; 24.8 ± 3.8 yrs, n = 11) and old men (O55; 70.0 ± 4.6 yrs, n = 13) were assigned to undergo a training program (12 weeks; 3 times/week) of moderate slow resistance training [55% of one repetition maximum (RM)] of the triceps surae and quadriceps muscles. Tendon dimensions were assessed using 1.5 T magnetic resonance imaging before and after 12 weeks. AT and PT cross sectional area (CSA) were determined every 10% of tendon length. Mechanical properties of the free AT, MG aponeurosis, PT, and VL aponeurosis were assessed using ultrasonography (deformation) and tendon force measurements. CSA of the AT but not PT was greater in O55 compared with Y55. At baseline, mechanical properties were generally lower in O55 than Y55 for AT, MG aponeurosis and VL aponeurosis (Young's modulus) but not for PT. CSA of the AT and PT increased equally in both groups following training. Further, for a given force, stiffness and Young's modulus also increased equally for VL aponeurosis and AT, for boths groups. The present study highlights that except for the PT, older men have lower tendon (AT, MG aponeurosis, and VL aponeurosis) mechanical properties than young men and 12-weeks of moderate slow resistance training appears sufficient to improve tendon size and mechanical adaptations in both young and older men. New and Noteworthy: These novel findings suggest that short-term moderate slow resistance training induces equal improvements in tendon size and mechanics regardless of age.

2.
Sensors (Basel) ; 23(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38139471

RESUMO

Back mobility is a criterion of well-being in a horse. Veterinarians visually assess the mobility of a horse's back during a locomotor examination. Quantifying it with on-board technology could be a major breakthrough to help them. The aim of this study was to evaluate the accuracy of a method of quantifying the back mobility of horses from inertial measurement units (IMUs) compared to motion capture (MOCAP) as a gold standard. Reflective markers and IMUs were positioned on the withers, eighteenth thoracic vertebra, and pelvis of four sound horses. The horses performed a walk and trot in straight lines and performed a gallop in circles on a soft surface. The developed method, based on the three IMUs, consists of calculating the flexion/extension angle of the thoracolumbar region. The IMU method showed a mean bias of 0.8° (±1.5°) (mean (±SD)) and 0.8° (±1.4°), respectively, for the flexion and extension movements, all gaits combined, compared to the MOCAP method. The results of this study suggest that the developed method has a similar accuracy to that of MOCAP, opening up possibilities for easy measurements under field conditions. Future studies will need to examine the correlations between these biomechanical measures and clinicians' visual assessment of back mobility defects.


Assuntos
Dorso , Marcha , Cavalos , Animais , Fenômenos Biomecânicos , Pelve
3.
Methods Protoc ; 7(2)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38668137

RESUMO

To mineralize their shells, molluscs secrete a complex cocktail of proteins-collectively defined as the calcifying shell matrix-that remains occluded in the exoskeleton. Nowadays, protein extracts from shells are recognized as a potential source of bioactive substances, among which signalling molecules, bactericides or protease inhibitors offer the most tangible perspectives in applied sciences, health, and aquaculture. However, one technical obstacle in testing the activity of shell extracts lies in their high insolubility. In this paper, we present a protocol that circumvents this impediment. After an adapted shell protein extraction and the production of two organic fractions-one soluble, one insoluble-we employ a hand-operated tablet press machine to generate well-calibrated tablets composed of 100% insoluble shell matrix. FT-IR monitoring of the quality of the tablets shows that the pressure used in the press machine does not impair the molecular properties of the insoluble extracts. The produced tablets can be directly tested in different biological assays, such as the bactericidal inhibition zone assay in Petri dish, as illustrated here. Diverting the use of the hand-operated tablet press opens new perspectives in the analysis of insoluble shell matrices, for discovering novel bioactive components.

4.
Mar Biotechnol (NY) ; 26(3): 539-549, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652191

RESUMO

Many organisms incorporate inorganic solids into their tissues to improve functional and mechanical properties. The resulting mineralized tissues are called biominerals. Several studies have shown that nacreous biominerals induce osteoblastic extracellular mineralization. Among them, Pinctada margaritifera is well known for the ability of its organic matrix to stimulate bone cells. In this context, we aimed to study the effects of shell extracts from three other Pinctada species (Pinctada radiata, Pinctada maxima, and Pinctada fucata) on osteoblastic extracellular matrix mineralization, by using an in vitro model of mouse osteoblastic precursor cells (MC3T3-E1). For a better understanding of the Pinctada-bone mineralization relationship, we evaluated the effects of 4 other nacreous mollusks that are phylogenetically distant and distinct from the Pinctada genus. In addition, we tested 12 non-nacreous mollusks and one extra-group. Biomineral shell powders were prepared, and their organic matrix was partially extracted using ethanol. Firstly, the effect of these powders and extracts was assessed on the viability of MC3T3-E1. Our results indicated that neither the powder nor the ethanol-soluble matrix (ESM) affected cell viability at low concentrations. Then, we evaluated osteoblastic mineralization using Alizarin Red staining and we found a prominent MC3T3-E1 mineralization mainly induced by nacreous biominerals, especially those belonging to the Pinctada genus. However, few non-nacreous biominerals were also able to stimulate the extracellular mineralization. Overall, our findings validate the remarkable ability of CaCO3 biomineral extracts to promote bone mineralization. Nevertheless, further in vitro and in vivo studies are needed to uncover the mechanisms of action of biominerals in bone.


Assuntos
Exoesqueleto , Calcificação Fisiológica , Carbonato de Cálcio , Osteoblastos , Pinctada , Animais , Camundongos , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Pinctada/metabolismo , Carbonato de Cálcio/metabolismo , Carbonato de Cálcio/química , Carbonato de Cálcio/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Exoesqueleto/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Matriz Extracelular/metabolismo , Nácar/metabolismo , Biomineralização
5.
PLoS One ; 19(5): e0302646, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709766

RESUMO

The analysis of the DNA entrapped in ancient shells of molluscs has the potential to shed light on the evolution and ecology of this very diverse phylum. Ancient genomics could help reconstruct the responses of molluscs to past climate change, pollution, and human subsistence practices at unprecedented temporal resolutions. Applications are however still in their infancy, partly due to our limited knowledge of DNA preservation in calcium carbonate shells and the need for optimized methods for responsible genomic data generation. To improve ancient shell genomic analyses, we applied high-throughput DNA sequencing to 27 Mytilus mussel shells dated to ~111-6500 years Before Present, and investigated the impact, on DNA recovery, of shell imaging, DNA extraction protocols and shell sub-sampling strategies. First, we detected no quantitative or qualitative deleterious effect of micro-computed tomography for recording shell 3D morphological information prior to sub-sampling. Then, we showed that double-digestion and bleach treatment of shell powder prior to silica-based DNA extraction improves shell DNA recovery, also suggesting that DNA is protected in preservation niches within ancient shells. Finally, all layers that compose Mytilus shells, i.e., the nacreous (aragonite) and prismatic (calcite) carbonate layers, with or without the outer organic layer (periostracum) proved to be valuable DNA reservoirs, with aragonite appearing as the best substrate for genomic analyses. Our work contributes to the understanding of long-term molecular preservation in biominerals and we anticipate that resulting recommendations will be helpful for future efficient and responsible genomic analyses of ancient mollusc shells.


Assuntos
Exoesqueleto , Genômica , Moluscos , Animais , Genômica/métodos , Moluscos/genética , Microtomografia por Raio-X , Carbonato de Cálcio , Sequenciamento de Nucleotídeos em Larga Escala , Fósseis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa