Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
EMBO J ; 39(15): e103790, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32567735

RESUMO

Tumour-associated microglia/macrophages (TAM) are the most numerous non-neoplastic populations in the tumour microenvironment in glioblastoma multiforme (GBM), the most common malignant brain tumour in adulthood. The mTOR pathway, an important regulator of cell survival/proliferation, is upregulated in GBM, but little is known about the potential role of this pathway in TAM. Here, we show that GBM-initiating cells induce mTOR signalling in the microglia but not bone marrow-derived macrophages in both in vitro and in vivo GBM mouse models. mTOR-dependent regulation of STAT3 and NF-κB activity promotes an immunosuppressive microglial phenotype. This hinders effector T-cell infiltration, proliferation and immune reactivity, thereby contributing to tumour immune evasion and promoting tumour growth in mouse models. The translational value of our results is demonstrated in whole transcriptome datasets of human GBM and in a novel in vitro model, whereby expanded-potential stem cells (EPSC)-derived microglia-like cells are conditioned by syngeneic patient-derived GBM-initiating cells. These results raise the possibility that microglia could be the primary target of mTOR inhibition, rather than the intrinsic tumour cells in GBM.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Tolerância Imunológica , Microglia/imunologia , Proteínas de Neoplasias/imunologia , Serina-Treonina Quinases TOR/imunologia , Microambiente Tumoral/imunologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Knockout , Microglia/patologia , Proteínas de Neoplasias/genética , Serina-Treonina Quinases TOR/genética , Microambiente Tumoral/genética
2.
Int J Cancer ; 152(4): 713-724, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36250346

RESUMO

Glioblastoma (GBM) is the most common primary intracranial malignant tumor and consists of three molecular subtypes: proneural (PN), mesenchymal (MES) and classical (CL). Transition between PN to MES subtypes (PMT) is the glioma analog of the epithelial-mesenchymal transition (EMT) in carcinomas and is associated with resistance to therapy. CXCR4 signaling increases the expression of MES genes in glioma cell lines and promotes EMT in other cancers. RNA sequencing (RNAseq) data of PN GBMs in The Cancer Genome Atlas (TCGA) and secondary high-grade gliomas (HGGs) from an internal cohort were examined for correlation between CXCR4 expression and survival as well as expression of MES markers. Publicly available single-cell RNA sequencing (scRNAseq) data was analyzed for cell type specific CXCR4 expression. These results were validated in a genetic mouse model of PN GBM. Higher CXCR4 expression was associated with significantly reduced survival and increased expression of MES markers in TCGA and internal cohorts. CXCR4 was expressed in immune and tumor cells based on scRNAseq analysis. Higher CXCR4 expression within tumor cells on scRNAseq was associated with increased MES phenotype, suggesting a cell-autonomous effect. In a genetically engineered mouse model, tumors induced with CXCR4 exhibited a mesenchymal phenotype and shortened survival. These results suggest that CXCR4 signaling promotes PMT and shortens survival in GBM and highlights its inhibition as a potential therapeutic strategy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Animais , Camundongos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Glioma/genética , Fenótipo , Humanos
3.
J Neurosci ; 35(45): 15097-112, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26558781

RESUMO

Glioblastoma (GBM) is the most aggressive human brain tumor. Although several molecular subtypes of GBM are recognized, a robust molecular prognostic marker has yet to be identified. Here, we report that the stemness regulator Sox2 is a new, clinically important target of microRNA-21 (miR-21) in GBM, with implications for prognosis. Using the MiR-21-Sox2 regulatory axis, approximately half of all GBM tumors present in the Cancer Genome Atlas (TCGA) and in-house patient databases can be mathematically classified into high miR-21/low Sox2 (Class A) or low miR-21/high Sox2 (Class B) subtypes. This classification reflects phenotypically and molecularly distinct characteristics and is not captured by existing classifications. Supporting the distinct nature of the subtypes, gene set enrichment analysis of the TCGA dataset predicted that Class A and Class B tumors were significantly involved in immune/inflammatory response and in chromosome organization and nervous system development, respectively. Patients with Class B tumors had longer overall survival than those with Class A tumors. Analysis of both databases indicated that the Class A/Class B classification is a better predictor of patient survival than currently used parameters. Further, manipulation of MiR-21-Sox2 levels in orthotopic mouse models supported the longer survival of the Class B subtype. The MiR-21-Sox2 association was also found in mouse neural stem cells and in the mouse brain at different developmental stages, suggesting a role in normal development. Therefore, this mechanism-based classification suggests the presence of two distinct populations of GBM patients with distinguishable phenotypic characteristics and clinical outcomes. SIGNIFICANCE STATEMENT: Molecular profiling-based classification of glioblastoma (GBM) into four subtypes has substantially increased our understanding of the biology of the disease and has pointed to the heterogeneous nature of GBM. However, this classification is not mechanism based and its prognostic value is limited. Here, we identify a new mechanism in GBM (the miR-21-Sox2 axis) that can classify ∼50% of patients into two subtypes with distinct molecular, radiological, and pathological characteristics. Importantly, this classification can predict patient survival better than the currently used parameters. Further, analysis of the miR-21-Sox2 relationship in mouse neural stem cells and in the mouse brain at different developmental stages indicates that miR-21 and Sox2 are predominantly expressed in mutually exclusive patterns, suggesting a role in normal neural development.


Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/metabolismo , Glioblastoma/classificação , Glioblastoma/metabolismo , MicroRNAs/biossíntese , Fatores de Transcrição SOXB1/biossíntese , Animais , Biomarcadores Tumorais/biossíntese , Neoplasias Encefálicas/diagnóstico , Células Cultivadas , Glioblastoma/diagnóstico , Humanos , Masculino , Camundongos , Camundongos Nus , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida/tendências
4.
J Clin Invest ; 134(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38941297

RESUMO

STING agonists can reprogram the tumor microenvironment to induce immunological clearance within the central nervous system. Using multiplexed sequential immunofluorescence (SeqIF) and the Ivy Glioblastoma Atlas, STING expression was found in myeloid populations and in the perivascular space. The STING agonist 8803 increased median survival in multiple preclinical models of glioblastoma, including QPP8, an immune checkpoint blockade-resistant model, where 100% of mice were cured. Ex vivo flow cytometry profiling during the therapeutic window demonstrated increases in myeloid tumor trafficking and activation, alongside enhancement of CD8+ T cell and NK effector responses. Treatment with 8803 reprogrammed microglia to express costimulatory CD80/CD86 and iNOS, while decreasing immunosuppressive CD206 and arginase. In humanized mice, where tumor cell STING is epigenetically silenced, 8803 therapeutic activity was maintained, further attesting to myeloid dependency and reprogramming. Although the combination with a STAT3 inhibitor did not further enhance STING agonist activity, the addition of anti-PD-1 antibodies to 8803 treatment enhanced survival in an immune checkpoint blockade-responsive glioma model. In summary, 8803 as a monotherapy demonstrates marked in vivo therapeutic activity, meriting consideration for clinical translation.


Assuntos
Glioblastoma , Proteínas de Membrana , Microambiente Tumoral , Animais , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Microambiente Tumoral/imunologia , Camundongos , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/agonistas , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética
5.
Stem Cells ; 30(3): 405-14, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22228704

RESUMO

Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. Although many GBM tumors are believed to be caused by self-renewing, glioblastoma-derived stem-like cells (GSCs), the mechanisms that regulate self-renewal and other oncogenic properties of GSCs are only now being unraveled. Here we showed that GSCs derived from GBM patient specimens express varying levels of the transcriptional repressor repressor element 1 silencing transcription factor (REST), suggesting heterogeneity across different GSC lines. Loss- and gain-of-function experiments indicated that REST maintains self-renewal of GSCs. High REST-expressing GSCs (HR-GSCs) produced tumors histopathologically distinct from those generated by low REST-expressing GSCs (LR-GSCs) in orthotopic mouse brain tumor models. Knockdown of REST in HR-GSCs resulted in increased survival in GSC-transplanted mice and produced tumors with higher apoptotic and lower invasive properties. Conversely, forced expression of exogenous REST in LR-GSCs produced decreased survival in mice and produced tumors with lower apoptotic and higher invasive properties, similar to HR-GSCs. Thus, based on our results, we propose that a novel function of REST is to maintain self-renewal and other oncogenic properties of GSCs and that REST can play a major role in mediating tumorigenicity in GBM.


Assuntos
Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Proteínas Repressoras/fisiologia , Adipocinas/metabolismo , Animais , Apoptose , Movimento Celular , Proliferação de Células , Proteína 1 Semelhante à Quitinase-3 , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Lectinas/metabolismo , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
6.
Oncoimmunology ; 11(1): 2062827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433114

RESUMO

Osteopontin (OPN) is produced by tumor cells as well as by myeloid cells and is enriched in the tumor microenvironment (TME) of many cancers. Given the roles of OPN in tumor progression and immune suppression, we hypothesized that targeting OPN with aptamers that have high affinity and specificity could be a promising therapeutic strategy. Bi-specific aptamers targeting ligands for cellular internalization were conjugated to siRNAs to suppress OPN were created, and therapeutic leads were selected based on target engagement and in vivo activity. Aptamers as carriers for siRNA approaches were created including a cancer targeting nucleolin aptamer Ncl-OPN siRNA and a myeloid targeting CpG oligodeoxynucleotide (ODN)-OPN siRNA conjugate. These aptamers were selected as therapeutic leads based on 70-90% OPN inhibition in cancer (GL261, 344SQ, 4T1B2b) and myeloid (DC2.4) cells relative to scramble controls. In established immune competent 344SQ lung cancer and 4T1B2b breast cancer models, these aptamers, including in combination, demonstrate therapeutic activity by inhibiting tumor growth. The Ncl-OPN siRNA aptamer demonstrated efficacy in an immune competent orthotopic glioma model administered systemically secondary to the ability of the aptamer to access the glioma TME. Therapeutic activity was demonstrated using both aptamers in a breast cancer brain metastasis model. Targeted inhibition of OPN in tumor cells and myeloid cells using bifunctional aptamers that are internalized by specific cell types and suppress OPN expression once internalized may have clinical potential in cancer treatment.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias da Mama , Glioma , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/uso terapêutico , Sistema Nervoso Central/metabolismo , Feminino , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Microambiente Tumoral
7.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35316217

RESUMO

BACKGROUNDImmune cell profiling of primary and metastatic CNS tumors has been focused on the tumor, not the tumor microenvironment (TME), or has been analyzed via biopsies.METHODSEn bloc resections of gliomas (n = 10) and lung metastases (n = 10) were analyzed via tissue segmentation and high-dimension Opal 7-color multiplex imaging. Single-cell RNA analyses were used to infer immune cell functionality.RESULTSWithin gliomas, T cells were localized in the infiltrating edge and perivascular space of tumors, while residing mostly in the stroma of metastatic tumors. CD163+ macrophages were evident throughout the TME of metastatic tumors, whereas in gliomas, CD68+, CD11c+CD68+, and CD11c+CD68+CD163+ cell subtypes were commonly observed. In lung metastases, T cells interacted with CD163+ macrophages as dyads and clusters at the brain-tumor interface and within the tumor itself and as clusters within the necrotic core. In contrast, gliomas typically lacked dyad and cluster interactions, except for T cell CD68+ cell dyads within the tumor. Analysis of transcriptomic data in glioblastomas revealed that innate immune cells expressed both proinflammatory and immunosuppressive gene signatures.CONCLUSIONOur results show that immunosuppressive macrophages are abundant within the TME and that the immune cell interactome between cancer lineages is distinct. Further, these data provide information for evaluating the role of different immune cell populations in brain tumor growth and therapeutic responses.FUNDINGThis study was supported by the NIH (NS120547), a Developmental research project award (P50CA221747), ReMission Alliance, institutional funding from Northwestern University and the Lurie Comprehensive Cancer Center, and gifts from the Mosky family and Perry McKay. Performed in the Flow Cytometry & Cellular Imaging Core Facility at MD Anderson Cancer Center, this study received support in part from the NIH (CA016672) and the National Cancer Institute (NCI) Research Specialist award 1 (R50 CA243707). Additional support was provided by CCSG Bioinformatics Shared Resource 5 (P30 CA046592), a gift from Agilent Technologies, a Research Scholar Grant from the American Cancer Society (RSG-16-005-01), a Precision Health Investigator Award from University of Michigan (U-M) Precision Health, the NCI (R37-CA214955), startup institutional research funds from U-M, and a Biomedical Informatics & Data Science Training Grant (T32GM141746).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Pulmonares , Neoplasias Encefálicas/patologia , Sistema Nervoso Central/metabolismo , Glioblastoma/patologia , Humanos , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral , Estados Unidos
8.
Front Immunol ; 12: 745893, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691054

RESUMO

Leptomeningeal disease (LMD) in melanoma patients is associated with significant neurological sequela and has a dismal outcome, with survival measured typically in weeks. Despite the therapeutic benefit of targeted therapies and immunotherapies for Stage IV melanoma, patients with LMD do not typically benefit. A deeper understanding of the tumor microenvironment (TME) of LMD may provide more appropriate therapeutic selection. A retrospective analysis of subjects who underwent surgical resection with LMD (n=8) were profiled with seven color multiplex staining to evaluate the expression of the global immune suppressive hub - the signal transducer and activator of transcription 3 (STAT3) and for the presence of CD3+ T cells, CD68+ monocyte-derived cells, CD163+ immune suppressive macrophages, and CD11c+ cells [potential dendritic cells (DCs)] in association with the melanoma tumor marker S100B and DAPI for cellular nuclear identification. High-resolution cellular imaging and quantification was conducted using the Akoya Vectra Polaris. CD11c+ cells predominate in the TME (10% of total cells), along with immunosuppressive macrophages (2%). Another potential subset of DCs co-expressing CD11c+ and the CD163+ immunosuppressive marker is frequently present (8/8 of specimens, 8%). Occasional CD3+ T cells are identified, especially in the stroma of the tumor (p=0.039). pSTAT3 nuclear expression is heterogeneous in the various immune cell populations. Occasional immune cluster interactions can be seen in the stroma and on the edge. In conclusion, the TME of LMD is largely devoid of CD3+ T cells but is enriched in immune suppression and innate immunity.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Melanoma/secundário , Neoplasias Meníngeas/secundário , Proteínas de Neoplasias/biossíntese , Fator de Transcrição STAT3/biossíntese , Subpopulações de Linfócitos T/imunologia , Adulto , Idoso , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Antígeno CD11c/análise , Células Dendríticas/patologia , Feminino , Humanos , Linfócitos do Interstício Tumoral/química , Macrófagos/patologia , Masculino , Melanoma/imunologia , Melanoma/metabolismo , Melanoma/cirurgia , Neoplasias Meníngeas/imunologia , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/cirurgia , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Receptores de Superfície Celular/análise , Estudos Retrospectivos , Fator de Transcrição STAT3/genética , Subpopulações de Linfócitos T/química , Microambiente Tumoral/imunologia
9.
Clin Cancer Res ; 27(15): 4325-4337, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34031054

RESUMO

PURPOSE: The blood-brain barrier (BBB) inhibits adequate dosing/penetration of therapeutic agents to malignancies in the brain. Low-intensity pulsed ultrasound (LIPU) is a safe therapeutic method of temporary BBB disruption (BBBD) to enhance chemotherapeutic delivery to the tumor and surrounding brain parenchyma for treatment of glioblastoma. EXPERIMENTAL DESIGN: We investigated if LIPU could enhance therapeutic efficacy of anti-PD-1 in C57BL/6 mice bearing intracranial GL261 gliomas, epidermal growth factor receptor variant III (EGFRvIII) chimeric antigen receptor (CAR) T cells in NSG mice with EGFRvIII-U87 gliomas, and a genetically engineered antigen-presenting cell (APC)-based therapy producing the T-cell attracting chemokine CXCL10 in the GL261-bearing mice. RESULTS: Mice treated with anti-PD-1 and LIPU-induced BBBD had a median survival duration of 58 days compared with 39 days for mice treated with anti-PD-1, and long-term survivors all remained alive after contralateral hemisphere rechallenge. CAR T-cell administration with LIPU-induced BBBD resulted in significant increases in CAR T-cell delivery to the CNS after 24 (P < 0.005) and 72 (P < 0.001) hours and increased median survival by greater than 129%, in comparison with CAR T cells alone. Local deposition of CXCL10-secreting APCs in the glioma microenvironment with LIPU enhanced T-cell glioma infiltration during the therapeutic window (P = 0.004) and markedly enhanced survival (P < 0.05). CONCLUSIONS: LIPU increases immune therapeutic delivery to the tumor microenvironment with an associated increase in survival and is an emerging technique for enhancing novel therapies in the brain.


Assuntos
Barreira Hematoencefálica/efeitos da radiação , Neoplasias Encefálicas/terapia , Glioma/terapia , Imunoterapia , Ondas Ultrassônicas , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Resultado do Tratamento
10.
Cancers (Basel) ; 12(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348707

RESUMO

MiRNAs can silence a wide range of genes, which may be an advantage for targeting heterogenous tumors like glioblastoma. Osteopontin (OPN) plays both an oncogenic role in a variety of cancers and can immune modulate macrophages. We conducted a genome wide profiling and bioinformatic analysis to identify miR-181a/b/c/d as potential miRNAs that target OPN. Luciferase assays confirmed the binding potential of miRNAs to OPN. Expression levels of miR-181a/b/c/d and OPN were evaluated by using quantitative real-time PCR and enzyme-linked immunosorbent assay in mouse and human glioblastomas and macrophages that showed these miRNAs were downregulated in Glioblastoma associated CD11b+ cells compared to their matched blood CD14b+ cells. miRNA mimicking and overexpression using lentiviruses showed that MiR-181a overexpression in glioblastoma cells led to decreased OPN production and proliferation and increased apoptosis in vitro. MiR-181a treatment of immune competent mice bearing intracranial glioblastoma demonstrated a 22% increase in median survival duration relative to that of control mice.

11.
Clin Cancer Res ; 26(17): 4699-4712, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32554515

RESUMO

PURPOSE: Anti-programmed cell death protein 1 (PD-1) therapy has demonstrated inconsistent therapeutic results in patients with glioblastoma (GBM) including those with profound impairments in CD8 T-cell effector responses. EXPERIMENTAL DESIGN: We ablated the CD8α gene in BL6 mice and intercrossed them with Ntv-a mice to determine how CD8 T cells affect malignant progression in forming endogenous gliomas. Tumor-bearing mice were treated with PD-1 to determine the efficacy of this treatment in the absence of T cells. The tumor microenvironment of treated and control mice was analyzed by IHC and FACS. RESULTS: We observed a survival benefit in immunocompetent mice with endogenously arising intracranial glioblastomas after intravenous administration of anti-PD-1. The therapeutic effect of PD-1 administration persisted in mice even after genetic ablation of the CD8 gene (CD8-/-). CD11b+ and Iba1+ monocytes and macrophages were enriched in the glioma microenvironment of the CD8-/- mice. The macrophages and microglia assumed a proinflammatory M1 response signature in the setting of anti-PD-1 blockade through the elimination of PD-1-expressing macrophages and microglia in the tumor microenvironment. Anti-PD-1 can inhibit the proliferation of and induce apoptosis of microglia through antibody-dependent cellular cytotoxicity, as fluorescently labeled anti-PD-1 was shown to gain direct access to the glioma microenvironment. CONCLUSIONS: Our results show that the therapeutic effect of anti-PD-1 blockade in GBM may be mediated by the innate immune system, rather than by CD8 T cells. Anti-PD-1 immunologically modulates innate immunity in the glioma microenvironment-likely a key mode of activity.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Inibidores de Checkpoint Imunológico/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Macrófagos Associados a Tumor/efeitos dos fármacos , Animais , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade Inata/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia
12.
JCI Insight ; 5(17)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32721947

RESUMO

In order to prioritize available immune therapeutics, immune profiling across glioma grades was conducted, followed by preclinical determinations of therapeutic effect in immune-competent mice harboring gliomas. T cells and myeloid cells were isolated from the blood of healthy donors and the blood and tumors from patients with glioma and profiled for the expression of immunomodulatory targets with an available therapeutic. Murine glioma models were used to assess therapeutic efficacy of agents targeting the most frequently expressed immune targets. In patients with glioma, the A2aR/CD73/CD39 pathway was most frequently expressed, followed by the PD-1 pathway. CD73 expression was upregulated on immune cells by 2-hydroxyglutarate in IDH1 mutant glioma patients. In murine glioma models, adenosine receptor inhibitors demonstrated a modest therapeutic response; however, the addition of other inhibitors of the adenosine pathway did not further enhance this therapeutic effect. Although adenosine receptor inhibitors could recover immunological effector functions in T cells, immune recovery was impaired in the presence of gliomas, indicating that irreversible immune exhaustion limits the effectiveness of adenosine pathway inhibitors in patients with glioma. This study illustrates vetting steps that should be considered before clinical trial implementation for immunotherapy-resistant cancers, including testing an agent's ability to restore immunological function in the context of intended use.


Assuntos
Neoplasias Encefálicas/imunologia , Glioma/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunossupressores/uso terapêutico , 5'-Nucleotidase/metabolismo , Adulto , Idoso , Animais , Antígenos CD/metabolismo , Apirase/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Gradação de Tumores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor A2A de Adenosina/metabolismo
13.
Clin Cancer Res ; 26(18): 4983-4994, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32605912

RESUMO

PURPOSE: Patients with central nervous system (CNS) tumors are typically treated with radiotherapy, but this is not curative and results in the upregulation of phosphorylated STAT3 (p-STAT3), which drives invasion, angiogenesis, and immune suppression. Therefore, we investigated the combined effect of an inhibitor of STAT3 and whole-brain radiotherapy (WBRT) in a murine model of glioma. EXPERIMENTAL DESIGN: C57BL/6 mice underwent intracerebral implantation of GL261 glioma cells, WBRT, and treatment with WP1066, a blood-brain barrier-penetrant inhibitor of the STAT3 pathway, or the two in combination. The role of the immune system was evaluated using tumor rechallenge strategies, immune-incompetent backgrounds, immunofluorescence, immune phenotyping of tumor-infiltrating immune cells (via flow cytometry), and NanoString gene expression analysis of 770 immune-related genes from immune cells, including those directly isolated from the tumor microenvironment. RESULTS: The combination of WP1066 and WBRT resulted in long-term survivors and enhanced median survival time relative to monotherapy in the GL261 glioma model (combination vs. control P < 0.0001). Immunologic memory appeared to be induced, because mice were protected during subsequent tumor rechallenge. The therapeutic effect of the combination was completely lost in immune-incompetent animals. NanoString analysis and immunofluorescence revealed immunologic reprograming in the CNS tumor microenvironment specifically affecting dendritic cell antigen presentation and T-cell effector functions. CONCLUSIONS: This study indicates that the combination of STAT3 inhibition and WBRT enhances the therapeutic effect against gliomas in the CNS by inducing dendritic cell and T-cell interactions in the CNS tumor.


Assuntos
Neoplasias Encefálicas/terapia , Comunicação Celular/imunologia , Quimiorradioterapia/métodos , Glioma/terapia , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/efeitos da radiação , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/efeitos da radiação , Linhagem Celular Tumoral/ultraestrutura , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/efeitos da radiação , Modelos Animais de Doenças , Glioma/imunologia , Glioma/patologia , Humanos , Memória Imunológica/efeitos dos fármacos , Camundongos , Piridinas/administração & dosagem , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/efeitos da radiação , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação , Tirfostinas/administração & dosagem
14.
Cancer Immunol Res ; 8(7): 952-965, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265228

RESUMO

Programmed cell death 1 ligand 1 (PD-L1) is a key driver of tumor-mediated immune suppression, and targeting it with antibodies can induce therapeutic responses. Given the costs and associated toxicity of PD-L1 blockade, alternative therapeutic strategies are needed. Using reverse-phase protein arrays to assess drugs in use or likely to enter trials, we performed a candidate drug screen for inhibitors of PD-L1 expression and identified verteporfin as a possible small-molecule inhibitor. Verteporfin suppressed basal and IFN-induced PD-L1 expression in vitro and in vivo through Golgi-related autophagy and disruption of the STAT1-IRF1-TRIM28 signaling cascade, but did not affect the proinflammatory CIITA-MHC II cascade. Within the tumor microenvironment, verteporfin inhibited PD-L1 expression, which associated with enhanced T-lymphocyte infiltration. Inhibition of chromatin-associated enzyme PARP1 induced PD-L1 expression in high endothelial venules (HEV) in tumors and, when combined with verteporfin, enhanced therapeutic efficacy. Thus, verteporfin effectively targets PD-L1 through transcriptional and posttranslational mechanisms, representing an alternative therapeutic strategy for targeting PD-L1.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Fator Regulador 1 de Interferon/metabolismo , Neoplasias/tratamento farmacológico , Fator de Transcrição STAT1/metabolismo , Proteína 28 com Motivo Tripartido/metabolismo , Verteporfina/farmacologia , Animais , Autofagia/efeitos dos fármacos , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Fármacos Fotossensibilizantes/farmacologia , Transdução de Sinais , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
15.
Exp Hematol ; 36(7): 832-44, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18400360

RESUMO

OBJECTIVE: The function of neutrophils as primary mediators of innate immunity depends on the activity of granule proteins and critical components of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex. Expression of their cognate genes is regulated during neutrophil differentiation by a complex network of intracellular signaling pathways. In this study, we have investigated the role of two members of the calcium/calmodulin-dependent protein kinase (CaMK) signaling cascade, CaMK I-like kinase (CKLiK) and CaMKKalpha, in regulating neutrophil differentiation and functional activation. MATERIALS AND METHODS: Mouse myeloid cell lines were used to examine the expression of a CaMK cascade in developing neutrophils and to examine the effects of constitutive activation vs inhibition of CaMKs on neutrophil maturation. RESULTS: Expression of CaMKKalpha was shown to increase during neutrophil differentiation in multiple cell lines, whereas expression of CKLiK increased as multipotent progenitors committed to promyelocytes, but then decreased as cells differentiated into mature neutrophils. Expression of constitutively active CKLiKs did not affect morphologic maturation, but caused dramatic decreases in both respiratory burst responses and chemotaxis. This loss of neutrophil function was accompanied by reduced secondary granule and gp91(phox) gene expression. The CaMK inhibitor KN-93 attenuated cytokine-stimulated proliferative responses in promyelocytic cell lines, and inhibited the respiratory burst. Similar data were observed with the CaMKKalpha inhibitor, STO-609. CONCLUSIONS: Overactivation of a cascade of CaMKs inhibits neutrophil maturation, suggesting that these kinases play an antagonistic role during neutrophil differentiation, but at least one CaMK is required for myeloid cell expansion and functional activation.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/biossíntese , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/biossíntese , Diferenciação Celular/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Ativação de Neutrófilo/fisiologia , Neutrófilos/enzimologia , Animais , Benzimidazóis/farmacologia , Benzilaminas/farmacologia , Células COS , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Citocinas/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Imunidade Inata/fisiologia , Glicoproteínas de Membrana/biossíntese , Camundongos , NADPH Oxidase 2 , NADPH Oxidases/biossíntese , Naftalimidas/farmacologia , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/citologia , Inibidores de Proteínas Quinases/farmacologia , Explosão Respiratória/efeitos dos fármacos , Explosão Respiratória/fisiologia , Vesículas Secretórias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sulfonamidas/farmacologia
16.
Neuro Oncol ; 21(6): 775-785, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-30953587

RESUMO

BACKGROUND: Glioblastoma (GBM) is a lethal, heterogeneous human brain tumor, with regulatory mechanisms that have yet to be fully characterized. Previous studies have indicated that the transcriptional repressor REST (repressor element-1 silencing transcription factor) regulates the oncogenic potential of GBM stem cells (GSCs) based on level of expression. However, how REST performs its regulatory role is not well understood. METHODS: We examined 2 independent high REST (HR) GSC lines using genome-wide assays, biochemical validations, gene knockdown analysis, and mouse tumor models. We analyzed in-house patient tumors and patient data present in The Cancer Genome Atlas (TCGA). RESULTS: Genome-wide transcriptome and DNA-binding analyses suggested the dopamine receptor D2 (DRD2) gene, a dominant regulator of neurotransmitter signaling, as a direct target of REST. Biochemical analyses and mouse intracranial tumor models using knockdown of REST and double knockdown of REST and DRD2 validated this target and suggested that DRD2 is a downstream target of REST regulating tumorigenesis, at least in part, through controlling invasion and apoptosis. Further, TCGA GBM data support the presence of the REST-DRD2 axis and reveal that high REST/low DRD2 (HRLD) and low REST/high DRD2 (LRHD) tumors are specific subtypes, are molecularly different from the known GBM subtypes, and represent functional groups with distinctive patterns of enrichment of gene sets and biological pathways. The inverse HRLD/LRHD expression pattern is also seen in in-house GBM tumors. CONCLUSIONS: These findings suggest that REST regulates neurotransmitter signaling pathways through DRD2 in HR-GSCs to impact tumorigenesis. They further suggest that the REST-DRD2 mechanism forms distinct subtypes of GBM.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Receptores de Dopamina D2/metabolismo , Proteínas Repressoras/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Receptores de Dopamina D2/genética , Proteínas Repressoras/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Clin Invest ; 129(1): 137-149, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30307407

RESUMO

Glioblastoma is highly enriched with macrophages, and osteopontin (OPN) expression levels correlate with glioma grade and the degree of macrophage infiltration; thus, we studied whether OPN plays a crucial role in immune modulation. Quantitative PCR, immunoblotting, and ELISA were used to determine OPN expression. Knockdown of OPN was achieved using complementary siRNA, shRNA, and CRISPR/Cas9 techniques, followed by a series of in vitro functional migration and immunological assays. OPN gene-deficient mice were used to examine the roles of non-tumor-derived OPN on survival of mice harboring intracranial gliomas. Patients with mesenchymal glioblastoma multiforme (GBM) show high OPN expression, a negative survival prognosticator. OPN is a potent chemokine for macrophages, and its blockade significantly impaired the ability of glioma cells to recruit macrophages. Integrin αvß5 (ITGαvß5) is highly expressed on glioblastoma-infiltrating macrophages and constitutes a major OPN receptor. OPN maintains the M2 macrophage gene signature and phenotype. Both tumor-derived and host-derived OPN were critical for glioma development. OPN deficiency in either innate immune or glioma cells resulted in a marked reduction in M2 macrophages and elevated T cell effector activity infiltrating the glioma. Furthermore, OPN deficiency in the glioma cells sensitized them to direct CD8+ T cell cytotoxicity. Systemic administration in mice of 4-1BB-OPN bispecific aptamers was efficacious, increasing median survival time by 68% (P < 0.05). OPN is thus an important chemokine for recruiting macrophages to glioblastoma, mediates crosstalk between tumor cells and the innate immune system, and has the potential to be exploited as a therapeutic target.


Assuntos
Neoplasias Encefálicas/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Glioblastoma/imunologia , Imunidade Inata , Macrófagos/imunologia , Proteínas de Neoplasias/imunologia , Osteopontina/imunologia , Animais , Aptâmeros de Nucleotídeos/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linfócitos T CD8-Positivos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/genética , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Osteopontina/genética , Receptores de Vitronectina/genética , Receptores de Vitronectina/imunologia
18.
Sci Rep ; 8(1): 12083, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108242

RESUMO

Overexpression of REST has been implicated in brain tumors, ischemic insults, epilepsy, and movement disorders such as Huntington's disease. However, owing to the lack of a conditional REST overexpression animal model, the mechanism of action of REST overexpression in these disorders has not been established in vivo. We created a REST overexpression mouse model using the human REST (hREST) gene. Our results using these mice confirm that hREST expression parallels endogenous REST expression in embryonic mouse brains. Further analyses indicate that REST represses the dopamine receptor 2 (Drd2) gene, which encodes a critical nigrostriatal receptor involved in regulating movement, in vivo. Overexpression of REST using Drd2-Cre in adult mice results in increased REST and decreased DRD2 expression in the striatum, a major site of DRD2 expression, and phenocopies the spontaneous locomotion deficits seen upon global DRD2 deletion or specific DRD2 deletion from indirect-pathway medium spiny neurons. Thus, our studies using this mouse model not only reveal a new function of REST in regulating spontaneous locomotion but also suggest that REST overexpression in DRD2-expressing cells results in spontaneous locomotion deficits.


Assuntos
Corpo Estriado/metabolismo , Locomoção/fisiologia , Neurônios/metabolismo , Receptores de Dopamina D2/metabolismo , Proteínas Repressoras/metabolismo , Animais , Corpo Estriado/citologia , Embrião de Mamíferos , Feminino , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Transgênicos , Modelos Animais , Receptores de Dopamina D2/genética , Proteínas Repressoras/genética , Análise de Sequência de RNA
19.
Oncoimmunology ; 7(4): e1412909, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29632728

RESUMO

Exosomes can mediate a dynamic method of communication between malignancies, including those sequestered in the central nervous system and the immune system. We sought to determine whether exosomes from glioblastoma (GBM)-derived stem cells (GSCs) can induce immunosuppression. We report that GSC-derived exosomes (GDEs) have a predilection for monocytes, the precursor to macrophages. The GDEs traverse the monocyte cytoplasm, cause a reorganization of the actin cytoskeleton, and skew monocytes toward the immune suppresive M2 phenotype, including programmed death-ligand 1 (PD-L1) expression. Mass spectrometry analysis demonstrated that the GDEs contain a variety of components, including members of the signal transducer and activator of transcription 3 (STAT3) pathway that functionally mediate this immune suppressive switch. Western blot analysis revealed that upregulation of PD-L1 in GSC exosome-treated monocytes and GBM-patient-infiltrating CD14+ cells predominantly correlates with increased phosphorylation of STAT3, and in some cases, with phosphorylated p70S6 kinase and Erk1/2. Cumulatively, these data indicate that GDEs are secreted GBM-released factors that are potent modulators of the GBM-associated immunosuppressive microenvironment.

20.
Neuro Oncol ; 19(4): 514-523, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28040710

RESUMO

Background: Glioblastoma (GBM) is one of the most common, aggressive, and invasive human brain tumors. There are few reliable mechanism-based therapeutic approaches for GBM patients. The transcriptional repressor RE1 silencing transcriptional factor (REST) regulates the oncogenic properties of a class of GBM stem-like cells (high-REST [HR]-GSCs) in humans. However, it has been unclear whether REST represses specific targets to regulate specific oncogenic functions or represses all targets with overlapping functions in GSCs. Methods: We used genome-wide, biochemical, and mouse intracranial tumorigenic assays to identify and determine functions of microRNA (miR) targets of REST in 2 independent HR-GSC lines. Results: Here we show that REST represses 2 major miR gene targets in HR-GSCs: miR-203, a new target, and miR-124, a known target. Gain of function of miR-124 or miR-203 in HR-GSCs increased survival in tumor-bearing mice. Importantly, the increased survival of tumor-bearing mice caused by knockdown of REST in HR-GSCs was reversed by double knockdown of REST and either miR-203 or miR-124, indicating that these 2 miRs are critical tumor suppressors that are repressed in REST-mediated tumorigenesis. We further show that while miR-124 and the REST-miR-124 pathways regulate self-renewal, apoptosis and invasion, miR-203 and the REST-miR-203 pathways regulate only invasion. We further identify and validate potential mRNA targets of miR-203 and miR-124 in REST-mediated HR-GSC tumor invasion. Conclusions: These findings indicate that REST regulates its miR gene targets with overlapping functions and suggest how REST maintains oncogenic competence in GSCs. These mechanisms could potentially be utilized to block REST-mediated GBM tumorigenesis.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa