Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
PLoS Genet ; 15(9): e1008367, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31513571

RESUMO

Plant developmental dynamics can be heritable, genetically correlated with fitness and yield, and undergo selection. Therefore, characterizing the mechanistic connections between the genetic architecture governing plant development and the resulting ontogenetic dynamics of plants in field settings is critically important for agricultural production and evolutionary ecology. We use hierarchical Bayesian Function-Valued Trait (FVT) models to estimate Brassica rapa growth curves throughout ontogeny, across two treatments, and in two growing seasons. We find genetic variation for plasticity of growth rates and final sizes, but not the inflection point (transition from accelerating to decelerating growth) of growth curves. There are trade-offs between growth rate and duration, indicating that selection for maximum yields at early harvest dates may come at the expense of late harvest yields and vice versa. We generate eigengene modules and determine which are co-expressed with FVT traits using a Weighted Gene Co-expression Analysis. Independently, we seed a Mutual Rank co-expression network model with FVT traits to identify specific genes and gene networks related to FVT. GO-analyses of eigengene modules indicate roles for actin/cytoskeletal genes, herbivore resistance/wounding responses, and cell division, while MR networks demonstrate a close association between metabolic regulation and plant growth. We determine that combining FVT Quantitative Trait Loci (QTL) and MR genes/WGCNA eigengene expression profiles better characterizes phenotypic variation than any single data type (i.e. QTL, gene, or eigengene alone). Our network analysis allows us to employ a targeted eQTL analysis, which we use to identify regulatory hotspots for FVT. We examine cis vs. trans eQTL that mechanistically link FVT QTL with structural trait variation. Colocalization of FVT, gene, and eigengene eQTL provide strong evidence for candidate genes influencing plant height. The study is the first to explore eQTL for FVT, and specifically do so in agroecologically relevant field settings.


Assuntos
Brassica rapa/genética , Brassica rapa/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Teorema de Bayes , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/fisiologia , Redes Reguladoras de Genes/genética , Genômica/métodos , Genótipo , Fenótipo , Locos de Características Quantitativas/genética , Transcriptoma/genética
3.
Mol Ecol ; 25(5): 1122-40, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-26800256

RESUMO

Floral attraction traits can significantly affect pollinator visitation patterns, but adaptive evolution of these traits may be constrained by correlations with other traits. In some cases, molecular pathways contributing to floral attraction are well characterized, offering the opportunity to explore loci potentially underlying variation among individuals. Here, we quantify the range of variation in floral UV patterning (i.e. UV 'bulls-eye nectar guides) among crop and wild accessions of Brassica rapa. We then use experimental crosses to examine the genetic architecture, candidate loci and biochemical underpinnings of this patterning as well as phenotypic manipulations to test the ecological impact. We find qualitative variation in UV patterning between wild (commonly lacking UV patterns) and crop (commonly exhibiting UV patterns) accessions. Similar to the majority of crops, recombinant inbred lines (RILs) derived from an oilseed crop × WI fast-plant® cross exhibit UV patterns, the size of which varies extensively among genotypes. In RILs, we further observe strong statistical-genetic and QTL correlations within petal morphological traits and within measurements of petal UV patterning; however, correlations between morphology and UV patterning are weak or nonsignificant, suggesting that UV patterning is regulated and may evolve independently of overall petal size. HPLC analyses reveal a high concentration of sinapoyl glucose in UV-absorbing petal regions, which, in concert with physical locations of UV-trait QTLs, suggest a regulatory and structural gene as candidates underlying observed quantitative variation. Finally, insects prefer flowers with UV bulls-eye patterns over those that lack patterns, validating the importance of UV patterning in pollen-limited populations of B. rapa.


Assuntos
Brassica rapa/genética , Flores/anatomia & histologia , Insetos/fisiologia , Polinização , Raios Ultravioleta , Animais , Brassica rapa/anatomia & histologia , Brassica rapa/química , Cinamatos/química , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/genética , Flores/química , Flores/genética , Genética Populacional , Genótipo , Glucosídeos/química , Fenótipo , Locos de Características Quantitativas , Quercetina/análogos & derivados , Quercetina/química
4.
New Phytol ; 208(1): 257-68, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26083847

RESUMO

Improved predictions of fitness and yield may be obtained by characterizing the genetic controls and environmental dependencies of organismal ontogeny. Elucidating the shape of growth curves may reveal novel genetic controls that single-time-point (STP) analyses do not because, in theory, infinite numbers of growth curves can result in the same final measurement. We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs) throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT), and examined genetic correlations between these traits and aspects of phenology, physiology, circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped trait quantitative trait loci (QTL). We found genetic trade-offs between leaf size and growth rate FVT and uncovered differences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape (allometry) as a genetic module independent of length and width and identified selection on FVT parameters of development. Leaf shape is associated with venation features that affect desiccation resistance. The genetic independence of leaf shape from other leaf traits may therefore enable crop optimization in leaf shape without negative effects on traits such as size, growth rate, duration or gas exchange.


Assuntos
Adaptação Fisiológica , Brassica rapa/genética , Redes Reguladoras de Genes , Genótipo , Fenótipo , Folhas de Planta , Locos de Características Quantitativas , Biomassa , Brassica rapa/anatomia & histologia , Brassica rapa/crescimento & desenvolvimento , Mapeamento Cromossômico , Secas , Meio Ambiente , Genes de Plantas , Ligação Genética , Modelos Biológicos , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA , Água
5.
Plant Cell Environ ; 37(11): 2542-52, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24635671

RESUMO

Plant respiration responses to elevated growth [CO(2)] are key uncertainties in predicting future crop and ecosystem function. In particular, the effects of elevated growth [CO(2)] on respiration over leaf development are poorly understood. This study tested the prediction that, due to greater whole plant photoassimilate availability and growth, elevated [CO(2)] induces transcriptional reprogramming and a stimulation of nighttime respiration in leaf primordia, expanding leaves and mature leaves of Arabidopsis thaliana. In primordia, elevated [CO(2)] altered transcript abundance, but not for genes encoding respiratory proteins. In expanding leaves, elevated [CO(2)] induced greater glucose content and transcript abundance for some respiratory genes, but did not alter respiratory CO(2) efflux. In mature leaves, elevated [CO(2)] led to greater glucose, sucrose and starch content, plus greater transcript abundance for many components of the respiratory pathway, and greater respiratory CO(2) efflux. Therefore, growth at elevated [CO(2)] stimulated dark respiration only after leaves transitioned from carbon sinks into carbon sources. This coincided with greater photoassimilate production by mature leaves under elevated [CO(2)] and peak respiratory transcriptional responses. It remains to be determined if biochemical and transcriptional responses to elevated [CO(2)] in primordial and expanding leaves are essential prerequisites for subsequent alterations of respiratory metabolism in mature leaves.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Dióxido de Carbono/farmacologia , Escuridão , Folhas de Planta/fisiologia , Transcrição Gênica/efeitos dos fármacos , Análise de Variância , Arabidopsis/efeitos dos fármacos , Biomassa , Carbono/metabolismo , Respiração Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Plant Cell Environ ; 37(4): 886-98, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24112047

RESUMO

Plant respiration responses to elevated CO2 concentration ( [CO2 ] ) have been studied for three decades without consensus about the mechanism of response. Positive effects of elevated [CO2 ] on leaf respiration have been attributed to greater substrate supply resulting from stimulated photosynthesis. Negative effects of elevated [CO2 ] on leaf respiration have been attributed to reduced demand for energy for protein turnover assumed to result from lower leaf N content. Arabidopsis thaliana was grown in ambient (370 ppm) and elevated (750 ppm) [CO2 ] with limiting and ample N availabilities. The stimulation of leaf dark respiration was attenuated in limiting N (+12%) compared with ample N supply (+30%). This response was associated with smaller stimulation of photosynthetic CO2 uptake, but not interactive effects of elevated CO2 and N supply on leaf protein, amino acids or specific leaf area. Elevated [CO2 ] also resulted in greater abundance of transcripts for many components of the respiratory pathway. A greater transcriptional response to elevated [CO2 ] was observed in ample N supply at midday versus midnight, consistent with reports that protein synthesis is greatest during the day. Greater foliar expression of respiratory genes under elevated [CO2 ] has now been observed in diverse herbaceous species, suggesting a widely conserved response.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Dióxido de Carbono/farmacologia , Nitrogênio/farmacologia , Folhas de Planta/fisiologia , Transcrição Gênica/efeitos dos fármacos , Análise de Variância , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Biomassa , Respiração Celular/efeitos dos fármacos , Respiração Celular/genética , Respiração Celular/efeitos da radiação , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos da radiação , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Luz , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Amido/metabolismo , Transcrição Gênica/efeitos da radiação
8.
Plant Cell Environ ; 35(1): 169-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21923758

RESUMO

Antioxidant metabolism is responsive to environmental conditions, and is proposed to be a key component of ozone (O(3)) tolerance in plants. Tropospheric O(3) concentration ([O(3)]) has doubled since the Industrial Revolution and will increase further if precursor emissions rise as expected over this century. Additionally, atmospheric CO(2) concentration ([CO(2)]) is increasing at an unprecedented rate and will surpass 550 ppm by 2050. This study investigated the molecular, biochemical and physiological changes in soybean exposed to elevated [O(3) ] in a background of ambient [CO(2)] and elevated [CO(2)] in the field. Previously, it has been difficult to demonstrate any link between antioxidant defences and O(3) stress under field conditions. However, this study used principle components analysis to separate variability in [O(3)] from variability in other environmental conditions (temperature, light and relative humidity). Subsequent analysis of covariance determined that soybean antioxidant metabolism increased with increasing [O(3)], in both ambient and elevated [CO(2)]. The transcriptional response was dampened at elevated [CO(2)], consistent with lower stomatal conductance and lower O(3) flux into leaves. Energetically expensive increases in antioxidant metabolism and tetrapyrrole synthesis at elevated [O(3)] were associated with greater transcript levels of enzymes involved in respiratory metabolism.


Assuntos
Antioxidantes/metabolismo , Dióxido de Carbono/farmacologia , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Ozônio/farmacologia , Transporte Biológico/efeitos dos fármacos , Carboidratos/biossíntese , Respiração Celular/efeitos dos fármacos , Clorofila/metabolismo , Meio Ambiente , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Análise de Componente Principal/métodos , RNA de Plantas/genética , Glycine max/genética , Tetrapirróis/biossíntese
9.
J Exp Bot ; 62(9): 3235-46, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21398428

RESUMO

Predictions of future ecosystem function and food supply from staple C(4) crops, such as maize, depend on elucidation of the mechanisms by which environmental change and growing conditions interact to determine future plant performance. To test the interactive effects of elevated [CO(2)], drought, and nitrogen (N) supply on net photosynthetic CO(2) uptake (A) in the world's most important C(4) crop, maize (Zea mays) was grown at ambient [CO(2)] (∼385 ppm) and elevated [CO(2)] (550 ppm) with either high N supply (168 kg N ha(-1) fertilizer) or limiting N (no fertilizer) at a site in the US Corn Belt. A mid-season drought was not sufficiently severe to reduce yields, but caused significant physiological stress, with reductions in stomatal conductance (up to 57%), A (up to 44%), and the in vivo capacity of phosphoenolpyruvate carboxylase (up to 58%). There was no stimulation of A by elevated [CO(2)] when water availability was high, irrespective of N availability. Elevated [CO(2)] delayed and relieved both stomatal and non-stomatal limitations to A during the drought. Limiting N supply exacerbated stomatal and non-stomatal limitation to A during drought. However, the effects of limiting N and elevated [CO(2)] were additive, so amelioration of stress by elevated [CO(2)] did not differ in magnitude between high N and limiting N supply. These findings provide new understanding of the limitations to C(4) photosynthesis that will occur under future field conditions of the primary region of maize production in the world.


Assuntos
Dióxido de Carbono/metabolismo , Secas , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Água/metabolismo , Zea mays/fisiologia , Biomassa , Ritmo Circadiano , Mudança Climática , Previsões , Fosfoenolpiruvato Carboxilase/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Chuva , Solo/química , Estresse Fisiológico , Zea mays/enzimologia , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
10.
G3 (Bethesda) ; 7(7): 2259-2270, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28546385

RESUMO

Brassica rapa is a model species for agronomic, ecological, evolutionary, and translational studies. Here, we describe high-density SNP discovery and genetic map construction for a B. rapa recombinant inbred line (RIL) population derived from field collected RNA sequencing (RNA-Seq) data. This high-density genotype data enables the detection and correction of putative genome misassemblies and accurate assignment of scaffold sequences to their likely genomic locations. These assembly improvements represent 7.1-8.0% of the annotated B. rapa genome. We demonstrate how using this new resource leads to a significant improvement for QTL analysis over the current low-density genetic map. Improvements are achieved by the increased mapping resolution and by having known genomic coordinates to anchor the markers for candidate gene discovery. These new molecular resources and improvements in the genome annotation will benefit the Brassicaceae genomics community and may help guide other communities in fine-tuning genome annotations.


Assuntos
Brassica rapa/genética , Mapeamento Cromossômico , Genoma de Planta , Anotação de Sequência Molecular , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , RNA de Plantas/genética
11.
Front Plant Sci ; 8: 900, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659934

RESUMO

The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics.

12.
J Toxicol Sci ; 37(4): 773-90, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22863857

RESUMO

Methamphetamine (MA) appears to produce neurotoxic effects, in part, through disruptions of energy metabolism. A recent study of the whole-body proteome of Drosophila melanogaster showed many changes in energy metabolism-related proteins, leading us to hypothesize that MA toxicity may cause whole-body disruptions of energy metabolism. To test this, we monitored the response of energy reserves and other metabolites to MA-exposure with and without the addition of dietary glucose. We also monitored changes in feeding behavior, locomotor activity and respiration rates associated with MA-exposure to investigate how MA affects energy balance. We observed that glycogen and triglyceride levels decreased dramatically within 48 hr of MA-exposure, indicating a strongly negative caloric balance. Behavioral assays revealed that MA-treated flies decreased food consumption by 60-80% and exhibited a 2-fold increase in locomotion. Caloric expenditure decreased with MA-exposure, apparently due to a compensatory decrease in resting metabolism, showing that anorexia was the primary driver of the negative caloric balance. Additionally, we observed that glucose supplementation of MA-containing diet increased glycogen reserves by 44% at 48 hr, leading to a commensurate increase in survivorship. We conclude that dietary sugar supplementation enhances survivorship by partially compensating for decreased caloric intake resulting from MA-induced anorexia. The observation that MA produces similar behavioral changes in Drosophila and humans, i.e. increased locomotor activity and anorexia, further supports the use of Drosophila as a model organism for the study of the effects of MA.


Assuntos
Anorexia/fisiopatologia , Drosophila melanogaster/efeitos dos fármacos , Metanfetamina/toxicidade , Animais , Anorexia/induzido quimicamente , Dieta , Ingestão de Energia , Metabolismo Energético , Comportamento Alimentar , Ácido Glucárico/administração & dosagem , Glicogênio/análise , Glicogênio/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico , Triglicerídeos/análise , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa