Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Nutr ; 153(12): 3397-3405, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37898335

RESUMO

BACKGROUND: Regulation of mechanistic target of rapamycin complex 1 (mTORC1) plays an important role in aging and nutrition. For example, caloric restriction reduces mTORC1 signaling and extends lifespan, whereas nutrient abundance and obesity increase mTORC1 signaling and reduce lifespan. Skeletal muscle-specific knockout (KO) of DEP domain-containing 5 protein (DEPDC5) results in constitutively active mTORC1 signaling, muscle hypertrophy and an increase in mitochondrial respiratory capacity. The metabolic profile of skeletal muscle, in the setting of hyperactive mTORC1 signaling, is not well known. OBJECTIVES: To determine the metabolomic and lipidomic signature in skeletal muscle from female and male wild-type (WT) and DEPDC5 KO mice. METHODS: Tibialis anterior (TA) muscles from WT and transgenic (conditional skeletal muscle-specific DEPDC5 KO) were obtained from female and male adult mice. Polar metabolites and lipids were extracted using a Bligh-Dyer extraction from 5 samples per group and identified and quantified by LC-MS/MS. Resulting analyte peak areas were analyzed with t-test, analysis of variance, and Volcano plots for group comparisons (e.g., WT compared with KO) and multivariate statistical analysis for genotype and sex comparisons. RESULTS: A total of 162 polar metabolites (organic acids, amino acids, and amines and acyl carnitines) and 1141 lipid metabolites were detected in TA samples by LC-MS/MS. Few polar metabolites showed significant differences in KO muscles compared with WT within the same sex group. P-aminobenzoic acid, ß-alanine, and dopamine were significantly higher in KO male muscle whereas erythrose-4-phosphate and oxoglutaric acid were significantly reduced in KO females. The lipidomic profile of the KO groups revealed an increase of muscle phospholipids and reduced triacylglycerol and diacylglycerol compared with the WT groups. CONCLUSIONS: Sex differences were detected in polar metabolome and lipids were dependent on genotype. The metabolomic profile of mice with hyperactive skeletal muscle mTORC1 is consistent with an upregulation of mitochondrial function and amino acid utilization for protein synthesis.


Assuntos
Lipidômica , Espectrometria de Massas em Tandem , Feminino , Masculino , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Cromatografia Líquida , Músculo Esquelético/metabolismo , Camundongos Knockout , Lipídeos
2.
J Biol Chem ; 294(11): 4091-4102, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635399

RESUMO

mTORC1 regulates protein synthesis and in turn is regulated by growth factors, energy status, and amino acid availability. In kidney cell (HEK293-T) culture, the GAP activity toward RAG (GATOR1) protein complex suppresses activation of the RAG A/B-RAG C/D heterodimer when amino acids are insufficient. During amino acid sufficiency, the RAG heterodimer recruits mTORC1 to the lysosomal membrane where its interaction with Ras homolog enriched in brain (Rheb) stimulates mTORC1's kinase activity. The DEP domain containing 5 (DEPDC5) protein, a GATOR1 subunit, causes familial focal epilepsy when mutated, and global knockout of the Depdc5 gene is embryonically lethal. To study the function of DEPDC5 in skeletal muscle, we generated a muscle-specific inducible Depdc5 knockout mouse, hypothesizing that knocking out Depdc5 in muscle would make mTORC1 constitutively active, causing hypertrophy and improving muscle function. Examining mTORC1 signaling, morphology, mitochondrial respiratory capacity, contractile function, and applied physical function (e.g. rotarod, treadmill, grip test, and wheel running), we observed that mTORC1 activity was significantly higher in knockout (KO) mice, indicated by the increased phosphorylation of mTOR and its downstream effectors (by 118% for p-mTOR/mTOR, 114% for p-S6K1/S6K1, and 35% for p-4E-BP1/4E-BP1). The KO animals also exhibited soleus muscle cell hypertrophy and a 2.5-fold increase in mitochondrial respiratory capacity. However, contrary to our hypothesis, neither physical nor contractile function improved. In conclusion, DEPDC5 depletion in adult skeletal muscle removes GATOR1 inhibition of mTORC1, resulting in muscle hypertrophy and increased mitochondrial respiration, but does not improve overall muscle quality and function.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Animais , Células Cultivadas , Proteínas Ativadoras de GTPase/deficiência , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Músculo Esquelético/patologia , Transdução de Sinais
3.
Am J Respir Cell Mol Biol ; 60(1): 68-83, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30153047

RESUMO

NF-κB/RelA triggers innate inflammation by binding to bromodomain-containing protein 4 (BRD4), an atypical histone acetyltransferase (HAT). Although RelA·BRD4 HAT mediates acute neutrophilic inflammation, its role in chronic and functional airway remodeling is not known. We observed that BRD4 is required for Toll-like receptor 3 (TLR3)-mediated mesenchymal transition, a cell-state change that is characteristic of remodeling. We therefore tested two novel highly selective BRD4 inhibitors, ZL0420 and ZL0454, for their effects on chronic airway remodeling produced by repetitive TLR3 agonist challenges, and compared their efficacy with that of two nonselective bromodomain and extraterminal (BET) protein inhibitors, JQ1 and RVX208. We observed that ZL0420 and ZL0454 more potently reduced polyinosinic:polycytidylic acid-induced weight loss and fibrosis as assessed by microcomputed tomography and second harmonic generation microscopy. These measures correlated with the collagen deposition observed in histopathology. Importantly, the ZL inhibitors were more effective than the nonselective BET inhibitors at equivalent doses. The ZL inhibitors had significant effects on lung physiology, reversing TLR3-associated airway hyperresponsiveness and increasing lung compliance in vivo. At the molecular level, ZL inhibitors reduced elaboration of the transforming growth factor-ß-induced growth program, thereby preventing mucosal mesenchymal transition and disrupting BRD4 HAT activity and complex formation with RelA. We also observed that ZL0454 treatment blocked polyinosinic:polycytidylic acid-associated expansion of the α-SMA1+/COL1A+ myofibroblast population and prevented myofibroblast transition in a coculture system. We conclude that 1) BRD4 is a central effector of the mesenchymal transition that results in paracrine activation of myofibroblasts, mechanistically linking innate inflammation to airway hyperresponsiveness and fibrosis, and 2) highly selective BRD4 inhibitors may be effective in reversing the effects of repetitive airway viral infections on innate inflammation-mediated remodeling.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Inflamação/fisiopatologia , Proteínas Nucleares/antagonistas & inibidores , Fibrose Pulmonar/tratamento farmacológico , Mucosa Respiratória/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Remodelação das Vias Aéreas/fisiologia , Animais , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Humanos , Imunidade Inata/imunologia , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , RNA Interferente Pequeno/genética , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo
4.
J Immunol ; 197(10): 3782-3791, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27742828

RESUMO

The mechanisms contributing to persistent eosinophil activation and poor eosinopenic response to glucocorticoids in severe asthma are poorly defined. We examined the effect of cytokines typically overexpressed in the asthmatic airways on glucocorticoid signaling in in vitro activated eosinophils. An annexin V assay used to measure eosinophil apoptosis showed that cytokine combinations of IL-2 plus IL-4 as well as TNF-α plus IFN-γ, or IL-3, GM-CSF, and IL-5 alone significantly diminished the proapoptotic response to dexamethasone. We found that IL-2 plus IL-4 resulted in impaired phosphorylation and function of the nuclear glucocorticoid receptor (GCR). Proteomic analysis of steroid sensitive and resistant eosinophils identified several differentially expressed proteins, namely protein phosphatase 5 (PP5), formyl peptide receptor 2, and annexin 1. Furthermore, increased phosphatase activity of PP5 correlated with impaired phosphorylation of the GCR. Importantly, suppression of PP5 expression with small interfering RNA restored proper phosphorylation and the proapoptotic function of the GCR. We also examined the effect of lipoxin A4 on PP5 activation by IL-2 plus IL-4. Similar to PP5 small interfering RNA inhibition, pretreatment of eosinophils with lipoxin A4 restored GCR phosphorylation and the proaptoptotic function of GCs. Taken together, our results showed 1) a critical role for PP5 in cytokine-induced resistance to GC-mediated eosinophil death, 2) supported the dependence of GCR phosphorylation on PP5 activity, and 3) revealed that PP5 is a target of the lipoxin A4-induced pathway countering cytokine-induced resistance to GCs in eosinophils.


Assuntos
Citocinas/imunologia , Eosinófilos/imunologia , Erros Inatos do Metabolismo/imunologia , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Receptores de Glucocorticoides/deficiência , Receptores de Glucocorticoides/metabolismo , Apoptose/efeitos dos fármacos , Asma/complicações , Asma/imunologia , Dexametasona/farmacologia , Eosinófilos/efeitos dos fármacos , Eosinófilos/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Hipersensibilidade/metabolismo , Interleucina-2/farmacologia , Interleucina-3/farmacologia , Interleucina-4/farmacologia , Interleucina-5/farmacologia , Lipoxinas/farmacologia , Erros Inatos do Metabolismo/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteômica , RNA Interferente Pequeno/farmacologia , Receptores de Glucocorticoides/imunologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
5.
J Proteome Res ; 16(8): 2983-2992, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28714690

RESUMO

Protein tyrosine nitration by oxidative and nitrate stress is important in the pathogenesis of many inflammatory or aging-related diseases. Mass spectrometry analysis of protein nitrotyrosine is very challenging because the non-nitrated peptides suppress the signals of the low-abundance nitrotyrosine (NT) peptides. No validated methods for enrichment of NT-peptides are currently available. Here we report an immunoaffinity enrichment of NT-peptides for proteomics analysis. The effectiveness of this approach was evaluated using nitrated protein standards and whole-cell lysates in vitro. A total of 1881 NT sites were identified from a nitrated whole-cell extract, indicating that this immunoaffinity-MS method is a valid approach for the enrichment of NT-peptides, and provides a significant advance for characterizing the nitrotyrosine proteome. We noted that this method had higher affinity to peptides with N-terminal nitrotyrosine relative to peptides with other nitrotyrosine locations, which raises the need for future study to develop a pan-specific nitrotyrosine antibody for unbiased, proteome-wide analysis of tyrosine nitration. We applied this method to quantify the changes in protein tyrosine nitration in mouse lungs after intranasal poly(I:C) treatment and quantified 237 NT sites. This result indicates that the immunoaffinity-MS method can be used for quantitative analysis of protein nitrotyrosines in complex samples.


Assuntos
Peptídeos/química , Proteômica/métodos , Tirosina/análogos & derivados , Animais , Anticorpos/análise , Sítios de Ligação , Pulmão/química , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Poli I-C/farmacologia , Tirosina/análise , Tirosina/química , Tirosina/imunologia , Tirosina/metabolismo
6.
J Ageing Longev ; 3(2): 159-178, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37876943

RESUMO

One inevitable consequence of aging is the gradual deterioration of physical function and exercise capacity, driven in part by the adverse effect of age on muscle tissue. We hypothesized that relationships exist between age-related differentially expressed genes (DEGs) in skeletal muscle and age-associated declines in physical function and exercise capacity. Previously, male C57BL/6mice (6m, months old, 24m, and 28m) were tested for physical function using a composite scoring system (comprehensive functional assessment battery, CFAB) comprised of five well-validated tests of physical function. In this study, total RNA was isolated from tibialis anterior samples (n = 8) randomly selected from each age group in the parent study. Using Next Generation Sequencing RNAseq to determine DEGs during aging (6m vs. 28m, and 6m vs. 24m), we found a greater than five-fold increase in DEGs in 28m compared to the 24m. Furthermore, regression of the normalized expression of each DEG with the CFAB score of the corresponding mouse revealed many more DEGs strongly associated (R ≥ |0.70|) with functional status in the older mice. Gene ontology results indicate highly enriched axon guidance and acetyl choline receptor gene sets, suggesting that denervation/reinnervation flux might potentially play a critical role in functional decline. We conclude that specific age-related DEG patterns are associated with declines in physical function, and the data suggest accelerated aging occurring between 24 and 28 months.

7.
Nat Cell Biol ; 7(2): 179-85, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15665854

RESUMO

The mechanosensitive cation channel (MscCa) transduces membrane stretch into cation (Na(+), K(+), Ca(2+) and Mg(2+)) flux across the cell membrane, and is implicated in cell-volume regulation, cell locomotion, muscle dystrophy and cardiac arrhythmias. However, the membrane protein(s) that form the MscCa in vertebrates remain unknown. Here, we use an identification strategy that is based on detergent solubilization of frog oocyte membrane proteins, followed by liposome reconstitution and evaluation by patch-clamp. The oocyte was chosen because it expresses the prototypical MscCa (>or=10(7)MscCa/oocyte) that is preserved in cytoskeleton-deficient membrane vesicles. We identified a membrane-protein fraction that reconstituted high MscCa activity and showed an abundance of a protein that had a relative molecular mass of 80,000 (M(r) 80K). This protein was identified, by immunological techniques, as the canonical transient receptor potential channel 1 (TRPC1). Heterologous expression of the human TRPC1 resulted in a >1,000% increase in MscCa patch density, whereas injection of a TRPC1-specific antisense RNA abolished endogenous MscCa activity. Transfection of human TRPC1 into CHO-K1 cells also significantly increased MscCa expression. These observations indicate that TRPC1 is a component of the vertebrate MscCa, which is gated by tension developed in the lipid bilayer, as is the case in various prokaryotic mechanosensitive (Ms) channels.


Assuntos
Canais de Cálcio/fisiologia , Canais Iônicos/química , Animais , Células CHO , Cricetinae , Humanos , Lipossomos , Camundongos , Técnicas de Patch-Clamp , RNA Antissenso/farmacologia , Estresse Mecânico , Canal de Cátion TRPA1 , Canais de Cátion TRPC , Transfecção , Canais de Potencial de Receptor Transitório , Xenopus laevis
8.
J Gerontol A Biol Sci Med Sci ; 76(5): 819-824, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32822475

RESUMO

The inability of older adults to maintain independence is a consequence of sarcopenia and frailty. In order to identify the molecular mechanisms responsible for decreased physical function, it will be critical to utilize a small animal model. The main purpose of this study was to develop a composite Comprehensive Functional Assessment Battery (CFAB) of well-validated tests to determine physical function and exercise capacity in 3 age groups of male C57BL/6 mice (6 months old, n = 29; 24 months old, n = 24; 28+ months old, n = 28). To measure physical function in mice, we used rotarod (overall motor function), grip meter (forelimb strength), treadmill (endurance), inverted cling (strength/endurance), voluntary wheel running (volitional exercise and activity rate), and muscle performance with in vivo contractile physiology (dorsiflexor torque). We hypothesized that CFAB would be a valid means to assess the physical function of a given mouse across the life span. In addition, we proposed that CFAB could be used to determine relationships between different parameters associated with sarcopenia. We found that there was an overall age-related significant decline (p < .05) in all measurements, and the CFAB score demonstrated that some individual mice (the upper quartile) retained the functional capacity of average mice 1 cohort younger. We conclude that the CFAB is a powerful, repeatable, and noninvasive tool to assess and compare physical function and assess complex motor task ability in mice, which will enable researchers to easily track performance at the individual mouse level.


Assuntos
Envelhecimento/fisiologia , Teste de Esforço , Tolerância ao Exercício/fisiologia , Animais , Fragilidade/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal , Sarcopenia/fisiopatologia
9.
Biochem Pharmacol ; 163: 481-492, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30753815

RESUMO

Aging is accompanied by progressive declines in skeletal muscle mass and strength and impaired regenerative capacity, predisposing older adults to debilitating age-related muscle deteriorations and severe morbidity. Muscle stem cells (muSCs) that proliferate, differentiate to fusion-competent myoblasts, and facilitate muscle regeneration are increasingly dysfunctional upon aging, impairing muscle recovery after injury. While regulators of muSC activity can offer novel therapeutics to improve recovery and reduce morbidity among aged adults, there are no known muSC regenerative small molecule therapeutics. We recently developed small molecule inhibitors of nicotinamide N-methyltransferase (NNMT), an enzyme overexpressed with aging in skeletal muscles and linked to impairment of the NAD+ salvage pathway, dysregulated sirtuin 1 activity, and increased muSC senescence. We hypothesized that NNMT inhibitor (NNMTi) treatment will rescue age-related deficits in muSC activity to promote superior regeneration post-injury in aging muscle. 24-month old mice were treated with saline (control), and low and high dose NNMTi (5 and 10 mg/kg) for 1-week post-injury, or control and high dose NNMTi for 3-weeks post-injury. All mice underwent an acute muscle injury (barium chloride injection) locally to the tibialis anterior (TA) muscle, and received 5-ethynyl-2'-deoxyuridine systemically to analyze muSC activity. In vivo contractile function measurements were conducted on the injured TA muscle and tissues collected for ex-vivo analyses, including myofiber cross-sectional area (CSA) measurements to assess muscle recovery. Results revealed that muscle stem cell proliferation and subsequent fusion were elevated in NNMTi-treated mice, supporting nearly 2-fold greater CSA and shifts in fiber size distribution to greater proportions of larger sized myofibers and fewer smaller sized fibers in NNMTi-treated mice compared to controls. Prolonged NNMTi treatment post-injury further augmented myofiber regeneration evinced by increasingly larger fiber CSA. Importantly, improved muSC activity translated not only to larger myofibers after injury but also to greater contractile function, with the peak torque of the TA increased by ∼70% in NNMTi-treated mice compared to controls. Similar results were recapitulated in vitro with C2C12 myoblasts, where NNMTi treatment promoted and enhanced myoblast differentiation with supporting changes in the cellular NAD+/NADH redox states. Taken together, these results provide the first clear evidence that NNMT inhibitors constitute a viable pharmacological approach to enhance aged muscle regeneration by rescuing muSC function, supporting the development of NNMTi as novel mechanism-of-action therapeutic to improve skeletal muscle regenerative capacity and functional recovery after musculoskeletal injury in older adults.


Assuntos
Envelhecimento/fisiologia , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Mioblastos , Distribuição Aleatória
10.
J Proteomics ; 205: 103415, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31195152

RESUMO

Small molecule inhibitors of the epigenetic regulator bromodomain-containing protein 4 (BRD4) are potential therapeutics for viral and allergen-induced airway remodeling. A limitation of their preclinical advancement is the lack of detailed understanding of mechanisms of action and biomarkers of effect. We report a systems-level pharmacoproteomics in a standardized murine model of toll-like receptor TLR3-NFκB/RelA innate inflammation in the absence or presence of a highly selective BRD4 inhibitor (ZL0454) or nonselective bromodomain and extraterminal domain inhibitor (JQ1). Proteomics of bronchoalveolar lavage fluid (BALF) secretome and exosomal proteins from this murine model revealed increased, selective, capillary leak associated with pericyte-myofibroblast transition, a phenomenon blocked by BRD4 inhibitors. BALF proteomics also suggested that ZL0454 better reduced the vascular leakage and extracellular matrix deposition than JQ1. A significant subset of inflammation-mediated remodeling factors was also identified in a mouse model of idiopathic pulmonary fibrosis produced by bleomycin. BALF exosome analysis indicated that BRD4 inhibitors reduced the induction of exosomes enriched in coagulation factors whose presence correlated with interstitial fibrin deposition. Finally, BALF samples from humans with severe asthma demonstrated similar upregulations of ORM2, APCS, SPARCL1, FGA, and FN1, suggesting their potential as biomarkers for early detection of airway remodeling and/or monitoring of therapy response. SIGNIFICANCE: Repetitive and chronic viral upper respiratory tract infections trigger toll-like receptor (TLR)3-NFκB/RelA mediated airway remodeling which is linked to a progressive decline in pulmonary function in patients with asthma and chronic obstructive pulmonary disease. Small molecule inhibitors of the epigenetic regulator bromodomain-containing protein 4 (BRD4) are potential therapeutics for viral and allergen-induced airway remodeling. A limitation of their preclinical advancement is the lack of detailed understanding of mechanisms of action and biomarkers of effect. Our study revealed that the activation of (TLR)3-NFκB/RelA pathway in the lung induced an elevation in coagulation, complement, and platelet factors, indicating the increased vascular leak during airway remodeling. The mechanism of vascular leakage was chronic inflammation-induced pericyte-myofibroblast transition, which was blocked by BRD4 inhibitors. Finally, proteomics analysis of the bronchoalveolar lavage fluid samples from humans with severe asthma demonstrated similar findings that we observed in the animal model.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Biomarcadores Farmacológicos/análise , Vasos Sanguíneos/efeitos dos fármacos , Proteínas de Ciclo Celular/antagonistas & inibidores , Citoproteção/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Animais , Asma/metabolismo , Asma/patologia , Azepinas/farmacologia , Biomarcadores Farmacológicos/metabolismo , Bleomicina , Vasos Sanguíneos/citologia , Vasos Sanguíneos/metabolismo , Líquido da Lavagem Broncoalveolar/química , Estudos de Casos e Controles , Modelos Animais de Doenças , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C/farmacologia , Proteoma/análise , Proteoma/metabolismo , Proteômica/métodos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Sulfonamidas/farmacologia , Receptor 3 Toll-Like/fisiologia , Triazóis/farmacologia
11.
Curr Top Membr ; 59: 191-231, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-25168139

RESUMO

This chapter reviews recent evidence indicating that canonical or classical transient receptor potential (TRPC) channels are directly or indirectly mechanosensitive (MS) and can therefore be designated as mechano-operated channels (MOCs). The MS functions of TRPCs may be mechanistically related to their better known functions as store-operated and receptor-operated channels (SOCs and ROCs). Mechanical forces may be conveyed to TRPC channels through the "conformational coupling" mechanism that transmits information regarding the status of internal Ca(2+) stores. All TRPCs are regulated by receptors coupled to phospholipases that are themselves MS and can regulate channels via lipidic second messengers. Accordingly, there may be several nonexclusive mechanisms by which mechanical forces may regulate TRPC channels, including direct sensitivity to bilayer mechanics, physical coupling to internal membranes and/or cytoskeletal proteins, and sensitivity to lipidic second messengers generated by MS enzymes. Various strategies that can be used for separating out different MS-gating mechanisms and their possible role in specific TRPCs are discussed.

12.
Curr Top Membr ; 59: 485-509, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-25168147

RESUMO

The acquisition of cell motility is a required step in order for a cancer cell to migrate from the primary tumor and spread to secondary sites (metastasize). For this reason, blocking tumor cell migration is considered a promising approach for preventing the spread of cancer. However, cancer cells just as normal cells can migrate by several different modes referred to as "amoeboid," "mesenchymal," and "collective cell." Under appropriate conditions, a single cell can switch between modes. A consequence of this plasticity is that a tumor cell may be able to avoid the effects of an agent that targets only one mode by switching modes. Therefore, a preferred strategy would be to target mechanisms that are shared by all modes. This chapter reviews the evidence that Ca(2+) influx via the mechanosensitive Ca(2+)-permeable channel (MscCa) is a critical regulator of all modes of cell migration and therefore represents a very good therapeutic target to block metastasis.

13.
J Extracell Vesicles ; 6(1): 1359478, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28819550

RESUMO

Background: Extracellular vesicles contain biological molecules specified by cell-type of origin and modified by microenvironmental changes. To conduct reproducible studies on exosome content and function, storage conditions need to have minimal impact on airway exosome integrity. Aim: We compared surface properties and protein content of airway exosomes that had been freshly isolated vs. those that had been treated with cold storage or freezing. Methods: Mouse bronchoalveolar lavage fluid (BALF) exosomes purified by differential ultracentrifugation were analysed immediately or stored at +4°C or -80°C. Exosomal structure was assessed by dynamic light scattering (DLS), transmission electron microscopy (TEM) and charge density (zeta potential, ζ). Exosomal protein content, including leaking/dissociating proteins, were identified by label-free LC-MS/MS. Results: Freshly isolated BALF exosomes exhibited a mean diameter of 95 nm and characteristic morphology. Storage had significant impact on BALF exosome size and content. Compared to fresh, exosomes stored at +4°C had a 10% increase in diameter, redistribution to polydisperse aggregates and reduced ζ. Storage at -80°C produced an even greater effect, resulting in a 25% increase in diameter, significantly reducing the ζ, resulting in multilamellar structure formation. In fresh exosomes, we identified 1140 high-confidence proteins enriched in 19 genome ontology biological processes. After storage at room temperature, 848 proteins were identified. In preparations stored at +4°C, 224 proteins appeared in the supernatant fraction compared to the wash fractions from freshly prepared exosomes; these proteins represent exosome leakage or dissociation of loosely bound "peri-exosomal" proteins. In preparations stored at -80°C, 194 proteins appeared in the supernatant fraction, suggesting that distinct protein groups leak from exosomes at different storage temperatures. Conclusions: Storage destabilizes the surface characteristics, morphological features and protein content of BALF exosomes. For preservation of the exosome protein content and representative functional analysis, airway exosomes should be analysed immediately after isolation.

14.
Immunol Res ; 25(2): 115-30, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11999166

RESUMO

Intrathymic T cell selection and peripheral activation of mature T cells are crucial for self-recognition and the general immune response to viral, bacterial, and tumor antigens. The T cell coreceptors, CD4 and CD8, contribute to the regulation of these processes. The importance of interactions between CD4 and molecules encoded by the class II major histocompatibility complex (MHC) for thymic T cell selection has been clearly established, however, the role of CD4-MHC class II interactions in T helper (TH) cell differentiation, in the maintenance of homeostasis in the peripheral immune system, and in the generation of memory TH cells is largely unclear. Here, we present evidence for a role of CD4 in controlling homeostasis in the peripheral immune system. We also demonstrate the importance of CD4-MHC class II interactions in inducing these previously not recognized functions of CD4.


Assuntos
Antígenos CD4/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Apoptose/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Sobrevivência Celular , Homeostase/imunologia , Humanos , Timo/citologia , Timo/imunologia
15.
Neuroreport ; 13(11): 1443-6, 2002 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-12167770

RESUMO

To test the possible role of ATP in transducing or modulating touch sensation, an isolated skin-nerve preparation from the toad, Bufo marinus, perfused on the inner side, was used to examine the effects of ATP on slowly adapting (SA) and rapidly adapting (RA) mechanoreceptors, identified by ramp and hold indentation of the skin. ATP (1-50 mM) did not generate impulse activity in either SA or RA mechanoreceptors nor increase their responses to mechanical stimulation. Instead, ATP (> or =5 mM) reversibly and selectively suppressed impulse discharge from SA mechanoreceptors. Our results indicate that while ATP may modulate the responses of specific touch receptors, it is not involved in transducing touch into nerve impulses.


Assuntos
Trifosfato de Adenosina/farmacologia , Mecanorreceptores/efeitos dos fármacos , Fenômenos Fisiológicos da Pele/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Bufo marinus , Técnicas In Vitro , Mecanorreceptores/fisiologia
16.
Channels (Austin) ; 6(4): 290-307, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22874798

RESUMO

The acquisition of cell motility plays a critical role in the spread of prostate cancer (PC), therefore, identifying a sensitive step that regulates PC cell migration should provide a promising target to block PC metastasis. Here, we report that a mechanosensitive Ca(2+)-permeable cation channel (MscCa) is expressed in the highly migratory/invasive human PC cell line, PC-3 and that inhibition of MscCa by Gd(3+) or GsMTx-4 blocks PC-3 cell migration and associated elevations in [Ca(2+)](i). Genetic suppression or overexpression of specific members of the canonical transient receptor potential Ca(2+) channel family (TRPC1 and TRPC3) also inhibit PC-3 cell migration, but they do so by mechanisms other that altering MscCa activity. Although LNCaP cells are nonmigratory, they also express relatively large MscCa currents, indicating that MscCa expression alone cannot confer motility on PC cells. MscCa in both cell lines show similar conductance and ion selectivity and both are functionally coupled via Ca(2+) influx to a small Ca(2+)-activated K(+) channel. However, MscCa in PC-3 and LNCaP cell patches show markedly different gating dynamics--while PC-3 cells typically express a sustained, non-inactivating MscCa current, LNCaP cells express a mechanically-fragile, rapidly inactivating MscCa current. Moreover, mechanical forces applied to the patch, can induce an irreversible transition from the transient to the sustained MscCa gating mode. Given that cancer cells experience increasing compressive and shear forces within a growing tumor, a similar shift in channel gating in situ would have significant effects on Ca(2+) signaling that may play a role in tumor progression.


Assuntos
Canais Iônicos/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Gadolínio/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Canais de Potássio Cálcio-Ativados/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Venenos de Aranha/farmacologia , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
17.
Pflugers Arch ; 455(6): 1097-103, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17957383

RESUMO

This article addresses whether TRPC1 or TRPC6 is an essential component of a mammalian stretch-activated mechano-sensitive Ca(2+) permeable cation channel (MscCa). We have transiently expressed TRPC1 and TRPC6 in African green monkey kidney (COS) or Chinese hamster ovary (CHO) cells and monitored the activity of the stretch-activated channels using a fast pressure clamp system. Although both TRPC1 and TRPC6 are highly expressed at the protein level, the amplitude of the mechano-sensitive current is not significantly altered by overexpression of these subunits. In conclusion, although several TRPC channel members, including TRPC1 and TRPC6, have been recently proposed to form MscCa in vertebrate cells, the functional expression of these TRPC subunits in heterologous systems remains problematic.


Assuntos
Mecanorreceptores/fisiologia , Canais de Cátion TRPC/fisiologia , Animais , Células CHO , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Cricetinae , Cricetulus , Humanos , Microscopia Confocal , Técnicas de Patch-Clamp , Plasmídeos , Canais de Cátion TRPC/biossíntese , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6 , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa