RESUMO
Cell lineage specification is accomplished by a concerted action of chromatin remodeling and tissue-specific transcription factors. However, the mechanisms that induce and maintain appropriate lineage-specific gene expression remain elusive. Here, we used an unbiased proteomics approach to characterize chromatin regulators that mediate the induction of neuronal cell fate. We found that Tip60 acetyltransferase is essential to establish neuronal cell identity partly via acetylation of the histone variant H2A.Z. Despite its tight correlation with gene expression and active chromatin, loss of H2A.Z acetylation had little effect on chromatin accessibility or transcription. Instead, loss of Tip60 and acetyl-H2A.Z interfered with H3K4me3 deposition and activation of a unique subset of silent, lineage-restricted genes characterized by a bivalent chromatin configuration at their promoters. Altogether, our results illuminate the mechanisms underlying bivalent chromatin activation and reveal that H2A.Z acetylation regulates neuronal fate specification by establishing epigenetic competence for bivalent gene activation and cell lineage transition.
Assuntos
Cromatina , Histonas , Histonas/genética , Histonas/metabolismo , Acetilação , Ativação Transcricional , Cromatina/genética , Processamento de Proteína Pós-Traducional , NucleossomosRESUMO
Direct lineage reprogramming is a promising approach for human disease modeling and regenerative medicine, with poorly understood mechanisms. Here, we reveal a hierarchical mechanism in the direct conversion of fibroblasts into induced neuronal (iN) cells mediated by the transcription factors Ascl1, Brn2, and Myt1l. Ascl1 acts as an "on-target" pioneer factor by immediately occupying most cognate genomic sites in fibroblasts. In contrast, Brn2 and Myt1l do not access fibroblast chromatin productively on their own; instead, Ascl1 recruits Brn2 to Ascl1 sites genome wide. A unique trivalent chromatin signature in the host cells predicts the permissiveness for Ascl1 pioneering activity among different cell types. Finally, we identified Zfp238 as a key Ascl1 target gene that can partially substitute for Ascl1 during iN cell reprogramming. Thus, a precise match between pioneer factors and the chromatin context at key target genes is determinative for transdifferentiation to neurons and likely other cell types.
Assuntos
Reprogramação Celular , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Redes Reguladoras de Genes , Neurônios/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Fibroblastos/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fatores do Domínio POU/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismoRESUMO
The cyclin-dependent kinase 1 (Cdk1) drives cell division. To uncover additional functions of Cdk1, we generated knockin mice expressing an analog-sensitive version of Cdk1 in place of wild-type Cdk1. In our study, we focused on embryonic stem cells (ESCs), because this cell type displays particularly high Cdk1 activity. We found that in ESCs, a large fraction of Cdk1 substrates is localized on chromatin. Cdk1 phosphorylates many proteins involved in epigenetic regulation, including writers and erasers of all major histone marks. Consistent with these findings, inhibition of Cdk1 altered histone-modification status of ESCs. High levels of Cdk1 in ESCs phosphorylate and partially inactivate Dot1l, the H3K79 methyltransferase responsible for placing activating marks on gene bodies. Decrease of Cdk1 activity during ESC differentiation de-represses Dot1l, thereby allowing coordinated expression of differentiation genes. These analyses indicate that Cdk1 functions to maintain the epigenetic identity of ESCs.
Assuntos
Proteína Quinase CDC2/metabolismo , Células-Tronco Embrionárias/fisiologia , Epigênese Genética , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Proteína Quinase CDC2/genética , Diferenciação Celular , Células Cultivadas , Imunoprecipitação da Cromatina/métodos , Feminino , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
IMPORTANCE: Our mouse model is a powerful tool for investigating the genetic mechanisms governing central nervous system (CNS) human immunodeficiency virus type-1 (HIV-1) infection and latency in the CNS at a single-cell level. A major advantage of our model is that it uses induced pluripotent stem cell-derived microglia, which enables human genetics, including gene function and therapeutic gene manipulation, to be explored in vivo, which is more challenging to study with current hematopoietic stem cell-based models for neuroHIV. Our transgenic tracing of xenografted human cells will provide a quantitative medium to develop new molecular and epigenetic strategies for reducing the HIV-1 latent reservoir and to test the impact of therapeutic inflammation-targeting drug interventions on CNS HIV-1 latency.
Assuntos
Infecções por HIV , HIV-1 , Células-Tronco Pluripotentes Induzidas , Microglia , Animais , Humanos , Camundongos , Sistema Nervoso Central , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/fisiologia , Microglia/virologia , Latência Viral , XenoenxertosRESUMO
Approaches to differentiating pluripotent stem cells (PSCs) into neurons currently face two major challenges-(i) generated cells are immature, with limited functional properties; and (ii) cultures exhibit heterogeneous neuronal subtypes and maturation stages. Using lineage-determining transcription factors, we previously developed a single-step method to generate glutamatergic neurons from human PSCs. Here, we show that transient expression of the transcription factors Ascl1 and Dlx2 (AD) induces the generation of exclusively GABAergic neurons from human PSCs with a high degree of synaptic maturation. These AD-induced neuronal (iN) cells represent largely nonoverlapping populations of GABAergic neurons that express various subtype-specific markers. We further used AD-iN cells to establish that human collybistin, the loss of gene function of which causes severe encephalopathy, is required for inhibitory synaptic function. The generation of defined populations of functionally mature human GABAergic neurons represents an important step toward enabling the study of diseases affecting inhibitory synaptic transmission.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/fisiologia , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes/fisiologia , Fatores de Transcrição/genética , Animais , Engenharia Celular , Células Cultivadas , Humanos , Camundongos , Células-Tronco Pluripotentes/citologiaRESUMO
Somatic cell nuclear transfer, cell fusion, or expression of lineage-specific factors have been shown to induce cell-fate changes in diverse somatic cell types. We recently observed that forced expression of a combination of three transcription factors, Brn2 (also known as Pou3f2), Ascl1 and Myt1l, can efficiently convert mouse fibroblasts into functional induced neuronal (iN) cells. Here we show that the same three factors can generate functional neurons from human pluripotent stem cells as early as 6 days after transgene activation. When combined with the basic helix-loop-helix transcription factor NeuroD1, these factors could also convert fetal and postnatal human fibroblasts into iN cells showing typical neuronal morphologies and expressing multiple neuronal markers, even after downregulation of the exogenous transcription factors. Importantly, the vast majority of human iN cells were able to generate action potentials and many matured to receive synaptic contacts when co-cultured with primary mouse cortical neurons. Our data demonstrate that non-neural human somatic cells, as well as pluripotent stem cells, can be converted directly into neurons by lineage-determining transcription factors. These methods may facilitate robust generation of patient-specific human neurons for in vitro disease modelling or future applications in regenerative medicine.
Assuntos
Diferenciação Celular , Reprogramação Celular , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Células Cultivadas , Reprogramação Celular/genética , Reprogramação Celular/fisiologia , Córtex Cerebral/citologia , Técnicas de Cocultura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Condutividade Elétrica , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Potenciais da Membrana , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Medicina Regenerativa , Sinapses/metabolismo , Fatores de Transcrição/genética , TransgenesRESUMO
Recent studies suggest that induced neuronal (iN) cells that are directly transdifferentiated from nonneuronal cells provide a powerful opportunity to examine neuropsychiatric diseases. However, the validity of using this approach to examine disease-specific changes has not been demonstrated. Here, we analyze the phenotypes of iN cells that were derived from murine embryonic fibroblasts cultured from littermate wild-type and mutant mice carrying the autism-associated R704C substitution in neuroligin-3. We show that neuroligin-3 R704C-mutant iN cells exhibit a large and selective decrease in AMPA-type glutamate receptor-mediated synaptic transmission without changes in NMDA-type glutamate receptor- or in GABAA receptor-mediated synaptic transmission. Thus, the synaptic phenotype observed in R704C-mutant iN cells replicates the previously observed phenotype of R704C-mutant neurons. Our data show that the effect of the R704C mutation is applicable even to neurons transdifferentiated from fibroblasts and constitute a proof-of-concept demonstration that iN cells can be used for cellular disease modeling.
Assuntos
Transtorno Autístico/fisiopatologia , Moléculas de Adesão Celular Neuronais/genética , Modelos Animais de Doenças , Fibroblastos/citologia , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Fenótipo , Substituição de Aminoácidos/genética , Animais , Transtorno Autístico/genética , Transdiferenciação Celular/fisiologia , Células Cultivadas , Fibroblastos/fisiologia , Citometria de Fluxo , Imunofluorescência , Camundongos , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Receptores de AMPA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologiaRESUMO
Calcium indicators are sensitive tools to image neural activity. However, their use in human induced pluripotent stem cells (iPSC)-derived neurons is limited by silencing of the transgene. We generated the iPSC line MSE2336A carrying heterozygous insertion in the safe-harbor locus AAVS1 of the ultrasensitive protein calcium sensor (GCaMP6) under the control of CAG promoter and UCOE to maintain robust transgene expression in differentiated cells. The iPSC exhibited normal cell morphology, expression of pluripotency markers, genome integrity, and the ability to differentiate into the three primary germ layers. This line provides a powerful model to study activity in human neurons.
Assuntos
Alelos , Cálcio , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular , Inativação Gênica , Genes ReporterRESUMO
Genetic and experimental evidence suggests that Alzheimer's disease (AD) risk alleles and genes may influence disease susceptibility by altering the transcriptional and cellular responses of macrophages, including microglia, to damage of lipid-rich tissues like the brain. Recently, sc/nRNA sequencing studies identified similar transcriptional activation states in subpopulations of macrophages in aging and degenerating brains and in other diseased lipid-rich tissues. We collectively refer to these subpopulations of microglia and peripheral macrophages as DLAMs. Using macrophage sc/nRNA-seq data from healthy and diseased human and mouse lipid-rich tissues, we reconstructed gene regulatory networks and identified 11 strong candidate transcriptional regulators of the DLAM response across species. Loss or reduction of two of these transcription factors, BHLHE40/41, in iPSC-derived microglia and human THP-1 macrophages as well as loss of Bhlhe40/41 in mouse microglia, resulted in increased expression of DLAM genes involved in cholesterol clearance and lysosomal processing, increased cholesterol efflux and storage, and increased lysosomal mass and degradative capacity. These findings provide targets for therapeutic modulation of macrophage/microglial function in AD and other disorders affecting lipid-rich tissues.
Assuntos
Doença de Alzheimer , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Macrófagos , Microglia , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Colesterol , Proteínas de Homeodomínio , Lipídeos , Macrófagos/metabolismo , Microglia/metabolismoRESUMO
Protein monoaminylation is a class of posttranslational modification (PTM) that contributes to transcription, physiology and behavior. While recent analyses have focused on histones as critical substrates of monoaminylation, the broader repertoire of monoaminylated proteins in brain remains unclear. Here, we report the development/implementation of a chemical probe for the bioorthogonal labeling, enrichment and proteomics-based detection of dopaminylated proteins in brain. We identified 1,557 dopaminylated proteins - many synaptic - including γCaMKII, which mediates Ca2+-dependent cellular signaling and hippocampal-dependent memory. We found that γCaMKII dopaminylation is largely synaptic and mediates synaptic-to-nuclear signaling, neuronal gene expression and intrinsic excitability, and contextual memory. These results indicate a critical role for synaptic dopaminylation in adaptive brain plasticity, and may suggest roles for these phenomena in pathologies associated with altered monoaminergic signaling.
RESUMO
Ferroportin (FPN), the sole characterized iron exporter, is mainly controlled by the peptide hormone hepcidin in response to iron, erythroid factors, hypoxia, and inflammation. In addition, intracellular iron level controls FPN translation by modulating the binding of Iron Responsive Proteins at the 5'UTR of FPN mRNA. Recently, hypoxia inducible factor (HIF)2α has been shown to regulate FPN expression in intestinal cells. Here we show that, during experimentally-induced acute anemia in mice, FPN is regulated at transcriptional level in a cell-specific manner. FPN mRNA level increases in duodenum and spleen macrophages, whereas it does not change in liver and is strongly down-regulated in erythroid precursors. These results were confirmed in Caco2, Raw264.7 and K562 cells treated with a hypoxic stimulus. Moreover, we found a differential expression of HIF1α and HIF2α in cells and tissues that might account for the specificity of FPN regulation. Thus, hypoxia, by directly controlling hepcidin and its target FPN, orchestrates a complex regulatory network aimed at ensuring rapid iron recovery from the periphery and efficient iron utilization in the erythroid compartment.
Assuntos
Anemia/genética , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Transporte de Cátions/genética , Doença Aguda , Anemia/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Duodeno/metabolismo , Regulação da Expressão Gênica , Hepcidinas , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ferro/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/metabolismo , Transcrição GênicaRESUMO
Background: Genetic and experimental evidence strongly implicates myeloid cells in the etiology of AD and suggests that AD-associated alleles and genes may modulate disease risk by altering the transcriptional and cellular responses of macrophages (like microglia) to damage of lipid-rich tissues (like the brain). Specifically, recent single-cell/nucleus RNA sequencing (sc/nRNA-seq) studies identified a transcriptionally distinct state of subsets of macrophages in aging or degenerating brains (usually referred to as disease-associated microglia or DAM) and in other diseased lipid-rich tissues (e.g., obese adipose tissue, fatty liver, and atherosclerotic plaques). We collectively refer to these subpopulations as lipid-associated macrophages or LAMs. Importantly, this particular activation state is characterized by increased expression of genes involved in the phagocytic clearance of lipid-rich cellular debris (efferocytosis), including several AD risk genes. Methods: We used sc/nRNA-seq data from human and mouse microglia from healthy and diseased brains and macrophages from other lipid-rich tissues to reconstruct gene regulatory networks and identify transcriptional regulators whose regulons are enriched for LAM response genes (LAM TFs) across species. We then used gene knock-down/knock-out strategies to validate some of these LAM TFs in human THP-1 macrophages and iPSC-derived microglia in vitro, as well as mouse microglia in vivo. Results: We nominate 11 strong candidate LAM TFs shared across human and mouse networks (BHLHE41, HIF1A, ID2, JUNB, MAF, MAFB, MEF2A, MEF2C, NACA, POU2F2 and SPI1). We also demonstrate a strong enrichment of AD risk alleles in the cistrome of BHLHE41 (and its close homolog BHLHE40), thus implicating its regulon in the modulation of disease susceptibility. Loss or reduction of BHLHE40/41 expression in human THP-1 macrophages and iPSC-derived microglia, as well as loss of Bhlhe40/41 in mouse microglia led to increased expression of LAM response genes, specifically those involved in cholesterol clearance and lysosomal processing, with a concomitant increase in cholesterol efflux and storage, as well as lysosomal mass and degradative capacity. Conclusions: Taken together, this study nominates transcriptional regulators of the LAM response, experimentally validates BHLHE40/41 in human and mouse macrophages/microglia, and provides novel targets for therapeutic modulation of macrophage/microglia function in AD and other disorders of lipid-rich tissues.
RESUMO
The central nervous system (CNS) is a major human immunodeficiency virus type 1 reservoir. Microglia are the primary target cell of HIV-1 infection in the CNS. Current models have not allowed the precise molecular pathways of acute and chronic CNS microglial infection to be tested with in vivo genetic methods. Here, we describe a novel humanized mouse model utilizing human-induced pluripotent stem cell-derived microglia to xenograft into murine hosts. These mice are additionally engrafted with human peripheral blood mononuclear cells that served as a medium to establish a peripheral infection that then spread to the CNS microglia xenograft, modeling a trans-blood-brain barrier route of acute CNS HIV-1 infection with human target cells. The approach is compatible with iPSC genetic engineering, including inserting targeted transgenic reporter cassettes to track the xenografted human cells, enabling the testing of novel treatment and viral tracking strategies in a comparatively simple and cost-effective way vivo model for neuroHIV.
RESUMO
Transcriptional silencing of the FMR1 gene in fragile X syndrome (FXS) leads to the loss of the RNA-binding protein FMRP. In addition to regulating mRNA translation and protein synthesis, emerging evidence suggests that FMRP acts to coordinate proliferation and differentiation during early neural development. However, whether loss of FMRP-mediated translational control is related to impaired cell fate specification in the developing human brain remains unknown. Here, we use human patient induced pluripotent stem cell (iPSC)-derived neural progenitor cells and organoids to model neurogenesis in FXS. We developed a high-throughput, in vitro assay that allows for the simultaneous quantification of protein synthesis and proliferation within defined neural subpopulations. We demonstrate that abnormal protein synthesis in FXS is coupled to altered cellular decisions to favor proliferative over neurogenic cell fates during early development. Furthermore, pharmacologic inhibition of elevated phosphoinositide 3-kinase (PI3K) signaling corrects both excess protein synthesis and cell proliferation in a subset of patient neural cells.
Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Bioensaio , Diferenciação Celular , Linhagem da Célula/genética , Proliferação de Células , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imidazóis/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Morfolinas/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/patologia , Neurogênese/genética , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Piperazinas/farmacologia , Cultura Primária de Células , Biossíntese de Proteínas , Pirimidinonas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Macrophages of the reticuloendothelial system play a key role in recycling iron from hemoglobin of senescent or damaged erythrocytes. Heme oxygenase 1 degrades the heme moiety and releases inorganic iron that is stored in ferritin or exported to the plasma via the iron export protein ferroportin. In the plasma, iron binds to transferrin and is made available for de novo red cell synthesis. The aim of this study was to gain insight into the regulatory mechanisms that control the transcriptional response of iron export protein ferroportin to hemoglobin in macrophages. DESIGN AND METHODS: Iron export protein ferroportin mRNA expression was analyzed in RAW264.7 mouse macrophages in response to hemoglobin, heme, ferric ammonium citrate or protoporphyrin treatment or to siRNA mediated knockdown or overexpression of Btb And Cnc Homology 1 or nuclear accumulation of Nuclear Factor Erythroid 2-like. Iron export protein ferroportin promoter activity was analyzed using reporter constructs that contain specific truncations of the iron export protein ferroportin promoter or mutations in a newly identified MARE/ARE element. RESULTS: We show that iron export protein ferroportin is transcriptionally co-regulated with heme oxygenase 1 by heme, a degradation product of hemoglobin. The protoporphyrin ring of heme is sufficient to increase iron export protein ferroportin transcriptional activity while the iron released from the heme moiety controls iron export protein ferroportin translation involving the IRE in the 5'untranslated region. Transcription of iron export protein ferroportin is inhibited by Btb and Cnc Homology 1 and activated by Nuclear Factor Erythroid 2-like involving a MARE/ARE element located at position -7007/-7016 of the iron export protein ferroportin promoter. CONCLUSIONS: This finding suggests that heme controls a macrophage iron recycling regulon involving Btb and Cnc Homology 1 and Nuclear Factor Erythroid 2-like to assure the coordinated degradation of heme by heme oxygenase 1, iron storage and detoxification by ferritin, and iron export by iron export protein ferroportin.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Transporte de Cátions/genética , Heme/farmacologia , Fator 2 Relacionado a NF-E2/genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica/efeitos dos fármacos , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Western Blotting , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular , Compostos Férricos/farmacologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Hemoglobinas/farmacologia , Ferro/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Protoporfirinas/farmacologia , Compostos de Amônio Quaternário/farmacologia , Interferência de RNA , Sequências Reguladoras de Ácido Nucleico/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
The autism-associated synaptic-adhesion gene Neuroligin-4 (NLGN4) is poorly conserved evolutionarily, limiting conclusions from Nlgn4 mouse models for human cells. Here, we show that the cellular and subcellular expression of human and murine Neuroligin-4 differ, with human Neuroligin-4 primarily expressed in cerebral cortex and localized to excitatory synapses. Overexpression of NLGN4 in human embryonic stem cell-derived neurons resulted in an increase in excitatory synapse numbers but a remarkable decrease in synaptic strength. Human neurons carrying the syndromic autism mutation NLGN4-R704C also formed more excitatory synapses but with increased functional synaptic transmission due to a postsynaptic mechanism, while genetic loss of NLGN4 did not significantly affect synapses in the human neurons analyzed. Thus, the NLGN4-R704C mutation represents a change-of-function mutation. Our work reveals contrasting roles of NLGN4 in human and mouse neurons, suggesting that human evolution has impacted even fundamental cell biological processes generally assumed to be highly conserved.
Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Células Cultivadas , Córtex Cerebral/fisiologia , Células-Tronco Embrionárias/citologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Genes Reporter , Ácido Glutâmico/fisiologia , Humanos , Camundongos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Mutação de Sentido Incorreto , Neurogênese , Neurônios/fisiologia , Fenótipo , Receptores de Glutamato/fisiologia , Especificidade da Espécie , Sinapses/químicaRESUMO
Pelizaeus-Merzbacher disease (PMD) is an X-linked leukodystrophy caused by mutations in Proteolipid Protein 1 (PLP1), encoding a major myelin protein, resulting in profound developmental delay and early lethality. Previous work showed involvement of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress pathways, but poor PLP1 genotype-phenotype associations suggest additional pathogenetic mechanisms. Using induced pluripotent stem cell (iPSC) and gene-correction, we show that patient-derived oligodendrocytes can develop to the pre-myelinating stage, but subsequently undergo cell death. Mutant oligodendrocytes demonstrated key hallmarks of ferroptosis including lipid peroxidation, abnormal iron metabolism, and hypersensitivity to free iron. Iron chelation rescued mutant oligodendrocyte apoptosis, survival, and differentiationin vitro, and post-transplantation in vivo. Finally, systemic treatment of Plp1 mutant Jimpy mice with deferiprone, a small molecule iron chelator, reduced oligodendrocyte apoptosis and enabled myelin formation. Thus, oligodendrocyte iron-induced cell death and myelination is rescued by iron chelation in PMD pre-clinical models.
Assuntos
Deferiprona/uso terapêutico , Células-Tronco Pluripotentes Induzidas/fisiologia , Quelantes de Ferro/uso terapêutico , Ferro/metabolismo , Proteína Proteolipídica de Mielina/metabolismo , Oligodendroglia/fisiologia , Doença de Pelizaeus-Merzbacher/terapia , Animais , Diferenciação Celular , Células Cultivadas , Ferroptose , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/transplante , Peroxidação de Lipídeos , Camundongos , Camundongos Mutantes , Mutação/genética , Proteína Proteolipídica de Mielina/genética , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/transplante , Doença de Pelizaeus-Merzbacher/genética , Doença de Pelizaeus-Merzbacher/patologia , Transplante de Células-Tronco , Reparo Gênico Alvo-DirigidoRESUMO
Fragile X syndrome (FXS) is an X chromosome-linked disease leading to severe intellectual disabilities. FXS is caused by inactivation of the fragile X mental retardation 1 (FMR1) gene, but how FMR1 inactivation induces FXS remains unclear. Using human neurons generated from control and FXS patient-derived induced pluripotent stem (iPS) cells or from embryonic stem cells carrying conditional FMR1 mutations, we show here that loss of FMR1 function specifically abolished homeostatic synaptic plasticity without affecting basal synaptic transmission. We demonstrated that, in human neurons, homeostatic plasticity induced by synaptic silencing was mediated by retinoic acid, which regulated both excitatory and inhibitory synaptic strength. FMR1 inactivation impaired homeostatic plasticity by blocking retinoic acid-mediated regulation of synaptic strength. Repairing the genetic mutation in the FMR1 gene in an FXS patient cell line restored fragile X mental retardation protein (FMRP) expression and fully rescued synaptic retinoic acid signaling. Thus, our study reveals a robust functional impairment caused by FMR1 mutations that might contribute to neuronal dysfunction in FXS. In addition, our results suggest that FXS patient iPS cell-derived neurons might be useful for studying the mechanisms mediating functional abnormalities in FXS.
Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Homeostase , Mutação/genética , Plasticidade Neuronal , Neurônios/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Tretinoína/metabolismo , Alelos , Animais , Sequência de Bases , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Homeostase/efeitos dos fármacos , Humanos , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Tretinoína/farmacologia , Repetições de Trinucleotídeos/genética , Regulação para Cima/efeitos dos fármacosRESUMO
Mutations in the retinoblastoma tumor suppressor gene Rb are involved in many forms of human cancer. In this study, we investigated the early consequences of inactivating Rb in the context of cellular reprogramming. We found that Rb inactivation promotes the reprogramming of differentiated cells to a pluripotent state. Unexpectedly, this effect is cell cycle independent, and instead reflects direct binding of Rb to pluripotency genes, including Sox2 and Oct4, which leads to a repressed chromatin state. More broadly, this regulation of pluripotency networks and Sox2 in particular is critical for the initiation of tumors upon loss of Rb in mice. These studies therefore identify Rb as a global transcriptional repressor of pluripotency networks, providing a molecular basis for previous reports about its involvement in cell fate pliability, and implicate misregulation of pluripotency factors such as Sox2 in tumorigenesis related to loss of Rb function.
Assuntos
Carcinogênese/patologia , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína do Retinoblastoma/metabolismo , Animais , Carcinogênese/metabolismo , Ciclo Celular , Cromatina/metabolismo , Fibroblastos/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Ligação Proteica , Proteínas Repressoras/metabolismo , Proteína do Retinoblastoma/deficiência , Fatores de Transcrição SOXB1/genéticaRESUMO
Nuclear reprogramming by defined transcription factors became of broad interest in 2006 with the work of Takahashi and Yamanaka (Cell 126:663-676, 2006), but the first example of cell fate reshaping via ectopic expression of transcription factor was provided back in 1987 when Davis and colleagues induced features of a muscle cell in fibroblast using the muscle transcription factor MyoD (Davis et al., Cell 51:987-1000, 1987). In 2010 our laboratory described how forced expression of the three neuronal transcription factors Ascl1, Brn2, and Myt1l rapidly converts mouse fibroblasts into neuronal cells that exhibit biochemical and electrophysiological properties of neurons. We named these cells induced neuronal cells (iN cells) (Vierbuchen et al., Nature 463:1035-1041, 2010; Vierbuchen and Wernig, Nat Biotechnol 29:892-907, 2011). Interestingly, iN cells can also be derived from defined endodermal cells such as primary hepatocytes, suggesting the existence of a more general reprogramming paradigm (Marro et al., Cell Stem Cell 9:374-382, 2011). In this chapter we describe the detailed methods used to attain the direct conversion.