Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38676185

RESUMO

The interest in precise point positioning techniques using smartphones increased with the launch of the world's first dual-frequency L1/L5 GNSS smartphone, Xiaomi Mi 8. The smartphone GNSS antenna is low-cost, sensitive to multipath, and limited by physical space and design. The main purpose of this work is to determine the mechanical location and antenna performance in terms of radiation pattern in an anechoic chamber using a Vector Network Analyzer (VNA) and robotic positioning platform by varying the elevation and azimuth angles between the transmitter and smartphone GNSS antennas; the power received and satellite visibility are developed in an outdoor scenario. The results show a Planar Inverted-F Antenna with an omnidirectional radiation pattern without gain. The L1/E1/B1 and L5/E5a/B2a GNSS antennas are physically located at the top face of the screen, with dimensions of 48 × 17 mm and 60 × 13 mm, respectively. With the screen with line-of-sight toward the sky, L5 satellites have a better signal-noise ratio (SNR), unlike the back side, which loses 99% of the data in the PPP solution. Under multipath scenarios, the L1 GNSS smartphone antenna works with 25% less power than the GPS user segment recommendation, showing high sensitivity to track weak signals.

2.
Am J Med Genet B Neuropsychiatr Genet ; 195(3): e32960, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37860990

RESUMO

Psychiatric disorders have a great impact in terms of mortality, morbidity, and disability across the lifespan. Considerable effort has been devoted to understanding their complex and heterogeneous genetic architecture, including diverse ancestry populations. Our aim was to review the psychiatric genetics research published with Latin American populations from 2010 to 2019, and classify it according to country of origin, type of analysis, source of funding, and other variables. We found that most publications came from Brazil, Mexico, and Colombia. Also, local funds are generally not large enough for genome-wide studies in Latin America, with the exception of Brazil and Mexico; larger studies are often done in collaboration with international partners, mostly funded by US agencies. In most of the larger studies, the participants are individuals of Latin American ancestry living in the United States, which limits the potential for exploring the complex gene-environment interaction. Family studies, traditionally strong in Latin America, represent about 30% of the total research publications. Scarce local resources for research in Latin America have probably been an important limitation for conducting bigger and more complex studies, contributing to the reduced representation of these populations in global psychiatric genetics studies. Increasing diversity must be a goal to improve generalizability and applicability in clinical settings.


Assuntos
Hispânico ou Latino , Transtornos Mentais , Humanos , América Latina , Transtornos Mentais/genética , México , Projetos de Pesquisa
3.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569374

RESUMO

α-l-arabinofuranosidases are glycosyl hydrolases that catalyze the break between α-l-arabinofuranosyl substituents or between α-l-arabinofuranosides and xylose from xylan or xylooligosaccharide backbones. While they belong to several glycosyl hydrolase (GH) families, there are only 24 characterized GH62 arabinofuranosidases, making them a small and underrepresented group, with many of their features remaining unknown. Aside from their applications in the food industry, arabinofuranosidases can also aid in the processing of complex lignocellulosic materials, where cellulose, hemicelluloses, and lignin are closely linked. These materials can be fully converted into sugar monomers to produce secondary products like second-generation bioethanol. Alternatively, they can be partially hydrolyzed to release xylooligosaccharides, which have prebiotic properties. While endoxylanases and ß-xylosidases are also necessary to fully break down the xylose backbone from xylan, these enzymes are limited when it comes to branched polysaccharides. In this article, two new GH62 α-l-arabinofuranosidases from Talaromyces amestolkiae (named ARA1 and ARA-2) have been heterologously expressed and characterized. ARA-1 is more sensitive to changes in pH and temperature, whereas ARA-2 is a robust enzyme with wide pH and temperature tolerance. Both enzymes preferentially act on arabinoxylan over arabinan, although ARA-1 has twice the catalytic efficiency of ARA-2 on this substrate. The production of xylooligosaccharides from arabinoxylan catalyzed by a T. amestolkiae endoxylanase was significantly increased upon pretreatment of the polysaccharide with ARA-1 or ARA-2, with the highest synergism values reported to date. Finally, both enzymes (ARA-1 or ARA-2 and endoxylanase) were successfully applied to enhance saccharification by combining them with a ß-xylosidase already characterized from the same fungus.


Assuntos
Endo-1,4-beta-Xilanases , Xilanos , Humanos , Xilanos/química , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/metabolismo , Xilose , Biomassa , Especificidade por Substrato , Glicosídeo Hidrolases/metabolismo , Hidrólise
4.
Environ Monit Assess ; 195(3): 386, 2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36764975

RESUMO

Potential pollution of mining environmental liabilities' locations can be preliminarily and efficiently assessed by the potential generation of acid mine drainage and indices of contamination. This research evaluates the potential pollution by potentially toxic elements at locations with uranium mining liability evidence, using the net acid generation test and determining the background values to estimate acid mine drainage and indices of contamination. Sixty soil samples were collected, and the mineralogy and potentially toxic elements' total contents were determined by x-ray diffraction and optical spectrometry. The findings suggest that the soils related to a specific lithology might not present potential acid mine drainage generation but potential soil and sediment contamination. Future research is recommended on applying leaching tests to identify which potentially toxic elements are effectively being solubilized. Finally, it can be concluded that the study area's potential contamination is relatively low overall.


Assuntos
Metais Pesados , Poluentes do Solo , Urânio , Urânio/análise , México , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Solo/química , Mineração , Ácidos/análise , Metais Pesados/análise
5.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163307

RESUMO

The study of endoxylanases as catalysts to valorize hemicellulosic residues and to obtain glycosides with improved properties is a topic of great industrial interest. In this work, a GH10 ß-1,4-endoxylanase (XynSOS), from the ascomycetous fungus Talaromyces amestolkiae, has been heterologously produced in Pichia pastoris, purified, and characterized. rXynSOS is a highly glycosylated monomeric enzyme of 53 kDa that contains a functional CBM1 domain and shows its optimal activity on azurine cross-linked (AZCL)-beechwood xylan at 70 °C and pH 5. Substrate specificity and kinetic studies confirmed its versatility and high affinity for beechwood xylan and wheat arabinoxylan. Moreover, rXynSOS was capable of transglycosylating phenolic compounds, although with low efficiencies. For expanding its synthetic capacity, a glycosynthase variant of rXynSOS was developed by directed mutagenesis, replacing its nucleophile catalytic residue E236 by a glycine (rXynSOS-E236G). This novel glycosynthase was able to synthesize ß-1,4-xylooligosaccharides (XOS) of different lengths (four, six, eight, and ten xylose units), which are known to be emerging prebiotics. rXynSOS-E236G was also much more active than the native enzyme in the glycosylation of a broad range of phenolic compounds with antioxidant properties. The interesting capabilities of rXynSOS and its glycosynthase variant make them promising tools for biotechnological applications.


Assuntos
Glucuronatos/metabolismo , Glicosídeos/metabolismo , Oligossacarídeos/metabolismo , Fenóis/metabolismo , Talaromyces/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Cinética , Pichia/metabolismo , Prebióticos/microbiologia , Especificidade por Substrato , Xilanos/metabolismo , Xilose/metabolismo
6.
Environ Monit Assess ; 194(10): 792, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36107258

RESUMO

Indices of contamination (IC) are usually employed to assess the hazardousness associated with potentially toxic elements (PTE) from mining wastes (MW). For such, it is necessary to know the total concentrations of the PTE and local, regional, or global background or reference levels which are tolerable or acceptable threshold values for total content in soils. Although scientific literature is vast regarding the application of IC to MW, there is scarce research on the reference levels that must be employed in locations with no established comparison values. This study proposes basic reference levels for the global application of PTE contents in MW, leading to a global index of contamination (ICG). To this end, it was determined that the PTE to be assessed in MW should be As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, V, and Zn. From the analysis of background and baseline values for soils, reference values for the PTE compiled from worldwide standards or studies on soil and sediment evaluation, and PTE content in MW, a classification is proposed for ICG that considers MW as very low, low, moderate, high, and very high contamination potential. The findings presented herein can be helpful in the comparison of multiple types of MW, representing the contamination hazard by particle emission due to erosion processes that reach the soils or sediments of the surrounding environment. This evaluation can aid in the decision-making process regarding the reutilization of some types of MW that receive a low classification.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Cádmio/análise , Monitoramento Ambiental , Chumbo/análise , Mercúrio/análise , Metais Pesados/análise , Solo , Poluentes do Solo/análise
7.
Environ Microbiol ; 23(5): 2433-2447, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33615654

RESUMO

Interkingdom communication is of particular relevance in polymicrobial biofilms. In this work, the ability of the fungus Ophiostoma piceae to form biofilms individually and in consortium with the bacterium Pseudomonas putida, as well as the effect of fungal and bacterial signal molecules on the architecture of the biofilms was evaluated. Pseudomonas putida KT2440 is able to form biofilms through the secretion of exopolysaccharides and two large extracellular adhesion proteins, LapA and LapF. It has two intercellular signalling systems, one mediated by dodecanoic acid and an orphan LuxR receptor that could participate in the response to AHL-type quorum sensing molecules (QSMs). Furthermore, the dimorphic fungus O. piceae uses farnesol as QSM to control its yeast to hyphae morphological transition. Results show for the first time the ability of this fungus to form biofilms alone and in mixed cultures with the bacterium. Biofilms were induced by bacterial and fungal QSMs. The essential role of LapA-LapF proteins in the architecture of biofilms was corroborated, LapA was induced by farnesol and dodecanol, while LapF by 3-oxo-C6-HSL and 3-oxo-C12-HSL. Our results indicate that fungal signals can induce a transient rise in the levels of the secondary messenger c-di-GMP, which control biofilm formation and architecture.


Assuntos
Pseudomonas putida , Percepção de Quorum , Biofilmes , Fungos , Ophiostoma , Pseudomonas putida/genética
8.
Environ Microbiol ; 23(10): 5716-5732, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33538380

RESUMO

Because they comprise some of the most efficient wood-decayers, Polyporales fungi impact carbon cycling in forest environment. Despite continuous discoveries on the enzymatic machinery involved in wood decomposition, the vision on their evolutionary adaptation to wood decay and genome diversity remains incomplete. We combined the genome sequence information from 50 Polyporales species, including 26 newly sequenced genomes and sought for genomic and functional adaptations to wood decay through the analysis of genome composition and transcriptome responses to different carbon sources. The genomes of Polyporales from different phylogenetic clades showed poor conservation in macrosynteny, indicative of genome rearrangements. We observed different gene family expansion/contraction histories for plant cell wall degrading enzymes in core polyporoids and phlebioids and captured expansions for genes involved in signalling and regulation in the lineages of white rotters. Furthermore, we identified conserved cupredoxins, thaumatin-like proteins and lytic polysaccharide monooxygenases with a yet uncharacterized appended module as new candidate players in wood decomposition. Given the current need for enzymatic toolkits dedicated to the transformation of renewable carbon sources, the observed genomic diversity among Polyporales strengthens the relevance of mining Polyporales biodiversity to understand the molecular mechanisms of wood decay.


Assuntos
Basidiomycota , Polyporales , Basidiomycota/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Filogenia , Polyporales/genética , Polyporales/metabolismo , Transcriptoma/genética , Madeira/microbiologia
9.
Int Microbiol ; 24(4): 545-558, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34417929

RESUMO

As the main decomposers and recyclers in nature, fungi secrete complex mixtures of extracellular enzymes for degradation of plant biomass, which is essential for mobilization of the organic carbon fixed by the photosynthesis in vegetal cells. Biotechnology can emulate the closed natural biological cycles, using lignocellulosic biomass as a renewable resource and lignocellulolytic fungal enzymes as catalysts to sustainably produce consumer goods. Cellulose and hemicellulose are the major polysaccharides on Earth, and the main enzymes involved in their hydrolytic depolymerization are cellulases (endoglucanases, cellobiohydrolases, and ß-glucosidases) and hemicellulases (mainly endoxylanases and ß-xylosidases). This work will focus on the enzymes secreted by the filamentous ascomycete Talaromyces amestolkiae and on some of their biotechnological applications. Their excellent hydrolytic activity was demonstrated by the partial degradation of xylans to prebiotic oligosaccharides by the endoxylanase XynN, or by the saccharification of lignocellulosic wastes to monosaccharides (fermentable to ethanol) either by the whole secretomes or by isolated enzymes used as supplements of commercial cocktails. However, apart from their expected hydrolytic activity, some of the ß-glycosidases produced by this strain catalyze the transfer of a sugar molecule to specific aglycons by transglycosylation. As the synthesis of customized glycoconjugates is a major goal for biocatalysis, mutant variants of the ß-xyloxidase BxTW1 and the ß-glucosidases BGL-1 and BGL-2 were obtained by directed mutagenesis, substantially improving the regioselective production yields of bioactive glycosides since they showed reduced or null hydrolytic activity.


Assuntos
Secretoma , Talaromyces , Biomassa , Endo-1,4-beta-Xilanases , Talaromyces/genética
10.
J Chem Inf Model ; 61(2): 913-920, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33555857

RESUMO

Lipases are enzymes able to catalyze the hydrolysis or synthesis of triglycerides, depending on the reaction conditions, whereas sterol esterases show the same ability on sterol esters. Structurally, both kinds of enzymes display an α/ß-hydrolase fold, with a substrate-binding pocket formed by a hydrophobic cavity covered by a mobile lid. However, it has been reported that some lipases from the Candida rugosa-like family display wide substrate specificity on both triglycerides and sterol esters. Among them, enzymes with different biotechnological applications, such as the lipase isoenzymes produced by C. rugosa and the sterol esterase from Ophiostoma piceae, have been exhaustively characterized and their crystal structures are available. Differences in substrate affinity among these proteins have been attributed to changes in their hydrophobicity. In this work, we analyzed the full catalytic mechanisms of these proteins using molecular dynamics tools, gaining insight into their mechanistic properties. In addition, we developed an in silico protocol to predict the substrate specificity using C. rugosa and O. piceae lipases as model enzymes and triglycerides and cholesterol esters with different fatty acid chain lengths as model substrates. The protocol was validated by comparing the in silico results with those described in the literature. These results would be useful to perform virtual screening of substrates for enzymes of the C. rugosa-like family with unknown catalytic properties.


Assuntos
Candida , Lipase , Candida/metabolismo , Lipase/metabolismo , Ophiostoma , Saccharomycetales , Esterol Esterase/metabolismo , Especificidade por Substrato
11.
Ecotoxicol Environ Saf ; 224: 112629, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34399125

RESUMO

Mining operations are important causes of environmental pollution in developing countries where mining waste management is not adequate. Consequently, heavy metal(loid)s are easily released into the environment, being a potential risk to human health. This study carries out a Bayesian probabilistic human health risk assessment, related to multi-pathway exposure to heavy metal(loid)s in a gold mining area in Southern Ecuador. Concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn in tap water, surface water, and soil samples, were analyzed to assess the potential adverse human health effects based on the Hazard Index (HI) and Total cancer risk (TCR). Adults and children residents were surveyed to adjust their exposure parameters to the site-specific conditions. Exposure to heavy metal(loid)s resulted in unacceptable risk levels for human health in the two age groups, both carcinogenic (TCR > 1 × 10-5) and non-carcinogenic (HI > 1) through ingestion of tap water and incidental ingestion of surface water. Sensitivity analysis showed that As concentration in waters and exposure frequency were the main contributors to risk outcome. Exposure to soil via accidental ingestion and dermal contact was below the safety limit, not posing a risk to human health. These findings can provide a baseline for the environmental management of the mining area and indicate the need for further research on As pollution in water and its implications on the health of the inhabitants of mining communities.

12.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948409

RESUMO

The first lytic polysaccharide monooxygenase (LPMO) detected in the genome of the widespread ascomycete Talaromyces amestolkiae (TamAA9A) has been successfully expressed in Pichia pastoris and characterized. Molecular modeling of TamAA9A showed a structure similar to those from other AA9 LPMOs. Although fungal LPMOs belonging to the genera Penicillium or Talaromyces have not been analyzed in terms of regioselectivity, phylogenetic analyses suggested C1/C4 oxidation which was confirmed by HPAEC. To ascertain the function of a C-terminal linker-like region present in the wild-type sequence of the LPMO, two variants of the wild-type enzyme, one without this sequence and one with an additional C-terminal carbohydrate binding domain (CBM), were designed. The three enzymes (native, without linker and chimeric variant with a CBM) were purified in two chromatographic steps and were thermostable and active in the presence of H2O2. The transition midpoint temperature of the wild-type LPMO (Tm = 67.7 °C) and its variant with only the catalytic domain (Tm = 67.6 °C) showed the highest thermostability, whereas the presence of a CBM reduced it (Tm = 57.8 °C) and indicates an adverse effect on the enzyme structure. Besides, the potential of the different T. amestolkiae LPMO variants for their application in the saccharification of cellulosic and lignocellulosic materials was corroborated.


Assuntos
Celulose/metabolismo , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Talaromyces/metabolismo , Sequência de Aminoácidos , Celulose/química , Estabilidade Enzimática , Proteínas Fúngicas/química , Oxigenases de Função Mista/química , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato , Talaromyces/química , Talaromyces/enzimologia
13.
J Prosthet Dent ; 126(1): 110-114, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32665118

RESUMO

STATEMENT OF PROBLEM: Diagnostic stone casts can be digitized by using dental optical scanners based on structured light scanning technology. Nondental structured light scanning scanners could also be used; however, the accuracy of these nondental scanners remains unclear. PURPOSE: The purpose of this in vitro study was to measure the scanning accuracy (trueness and precision) of 3 nondental extraoral structured light scanners. MATERIAL AND METHODS: A representative maxillary diagnostic cast was obtained and digitized by using an extraoral dental scanner (Advaa Lab Scan; GC Europe), and a reference or control standard tessellation language file was obtained. Three nondental extraoral scanners were evaluated: groups ND-1 (Space Spider; Artec), ND-2 (Capture Mini; Geomagic), and ND-3 (DAVID SLS3; David). Ten digital scans per group were recorded at a constant room temperature (23 °C) by an experienced geodetic engineer following the manufacturer's recommendations. The control or reference file was used as a reference to measure the discrepancy between the digitized diagnostic cast and 3 different nondental scans by using an open-source software (CloudCompare v.2.6.1; CloudCompare) and the iterative closest point technique. The Shapiro-Wilk test revealed that the data were normally distributed. The data were analyzed by using 1-way ANOVA, followed by post hoc Bonferroni tests (α=.05). RESULTS: Significant differences between the 3 experimental nondental scanners and the control or reference scan (P<.001) were found. The ND-2 group had the lowest absolute mean error (trueness) and standard deviation (precision) (39 ±139 µm), followed by the ND-3 group (125 ±113 µm) and the ND1 group (-397 ±25 µm). No statistically significant differences were found in the mean error between the ND-2 and ND-3 groups (P=.228). CONCLUSIONS: Only 1 nondental extraoral scanner tested obtained trueness mean values similar to those of the reference dental scanner. In all groups, the precision mean values were higher than their trueness values, indicating low relative precision.


Assuntos
Técnica de Moldagem Odontológica , Modelos Dentários , Desenho Assistido por Computador , Imageamento Tridimensional , Maxila
14.
Molecules ; 26(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926080

RESUMO

Plant biomass constitutes the main source of renewable carbon on the planet. Its valorization has traditionally been focused on the use of cellulose, although hemicellulose is the second most abundant group of polysaccharides on Earth. The main enzymes involved in plant biomass degradation are glycosyl hydrolases, and filamentous fungi are good producers of these enzymes. In this study, a new strain of Aspergillus niger was used for hemicellulase production under solid-state fermentation using wheat straw as single-carbon source. Physicochemical parameters for the production of an endoxylanase were optimized by using a One-Factor-at-a-Time (OFAT) approach and response surface methodology (RSM). Maximum xylanase yield after RSM optimization was increased 3-fold, and 1.41- fold purification was achieved after ultrafiltration and ion-exchange chromatography, with about 6.2% yield. The highest activity of the purified xylanase was observed at 50 °C and pH 6. The enzyme displayed high thermal and pH stability, with more than 90% residual activity between pH 3.0-9.0 and between 30-40 °C, after 24 h of incubation, with half-lives of 30 min at 50 and 60 °C. The enzyme was mostly active against wheat arabinoxylan, and its kinetic parameters were analyzed (Km = 26.06 mg·mL-1 and Vmax = 5.647 U·mg-1). Wheat straw xylan hydrolysis with the purified ß-1,4 endoxylanase showed that it was able to release xylooligosaccharides, making it suitable for different applications in food technology.


Assuntos
Aspergillus niger/metabolismo , Endo-1,4-beta-Xilanases/biossíntese , Fermentação , Glucuronatos/biossíntese , Oligossacarídeos/biossíntese , Triticum/química , Resíduos , Algoritmos , Biomassa , Fenômenos Químicos , Endo-1,4-beta-Xilanases/isolamento & purificação , Ativação Enzimática , Glucuronatos/isolamento & purificação , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Químicos , Oligossacarídeos/isolamento & purificação , Polissacarídeos/biossíntese , Especificidade por Substrato , Xilanos/química
15.
Rev Esp Enferm Dig ; 113(4): 240-245, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33226252

RESUMO

OBJECTIVE: to assess the usefulness of medical treatment to achieve closure of internal fistulas detected on abdominal ultrasound in a series of patients with fistulizing Crohn's disease. MATERIAL AND METHODS: a retrospective analysis was performed of the medical records of patients with Crohn's disease with a fistula detected on abdominal ultrasound from 2010 to 2018. The study included patients who received medical treatment after the diagnosis of this complication and underwent ultrasonographic monitoring of the therapeutic response. The factors associated with the response to medical treatment or the need for surgery were investigated. RESULTS: forty-six patients were included in the study. Enteromesenteric (69.6 %) was the most common type of fistula and associated abscesses were found in 14 (30.4 %) patients. Fistulas were classified as complex in 20 patients. Treatment with immunosuppressants was started in 14 (30.4 %) cases and a biologic drug was added in 18 (39.1 %) patients. Complete closure of the abdominal fistula was observed with ultrasonography in 24 (52.2 %) of the 46 patients. The only factor related to fistula closure was the type of fistula and was more likely to occur in patients with an enteromesenteric fistula. Thirteen (28 %) of the 46 patients needed a surgical resection. The only factor with a significant correlation with a lower need for surgery was fistula closure after treatment (8.3 % vs 50 %, p = 0.002). CONCLUSION: medical treatment achieves internal fistula closure in more than half of cases and almost a third require surgical treatment. Abdominal ultrasound can detect abdominal fistulas at an earlier stage and allow prompt treatment changes.


Assuntos
Doença de Crohn , Fístula , Fístula Retal , Doença de Crohn/complicações , Doença de Crohn/diagnóstico por imagem , Humanos , Estudos Retrospectivos , Resultado do Tratamento , Ultrassonografia
16.
Environ Geochem Health ; 43(11): 4459-4474, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33881675

RESUMO

Gold mining is a significant source of metal(loid)s released into the environment. It is an issue of concern due to the potential adverse health effects associated with exposure to toxic elements. This study aimed to assess the ecological and human health risk caused by heavy metal(loid)s exposure in river sediments in Ponce Enríquez, one of the most important mining sites in Ecuador. Concentrations of As, Cd, Cu, Pb, and Zn were evaluated in 172 sediment samples to determine the Potential ecological risk (RI) and the carcinogenic (CR) and non-carcinogenic risk (HQ). The human exposure to polluted sediments during recreational activities was computed using Bayesian probabilistic models. Residents were randomly surveyed to adjust the risk models to the specific population data. More than 68% of the sampling stations pose a severe As and Cd ecological risk index ([Formula: see text] > 320). Likewise, residents exposed to river sediments showed a non-acceptable carcinogenic risk by incidental ingestion, being As the primary contributor to overall cancer in both children and adults receptors. Moreover, non-carcinogenic risk through the incidental ingestion of sediments was above the safe limit for children. This is the first study conducted in a mining region in Ecuador that reveals the severe levels of ecological and human health risk to which the population is exposed. These results can be applied as a baseline to develop public health strategies to monitor and reduce the health hazards of the residents of mining communities.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adulto , Teorema de Bayes , Criança , China , Equador , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Medição de Risco , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
Microb Cell Fact ; 19(1): 127, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522206

RESUMO

BACKGROUND: The interest for finding novel ß-glucosidases that can improve the yields to produce second-generation (2G) biofuels is still very high. One of the most desired features for these enzymes is glucose tolerance, which enables their optimal activity under high-glucose concentrations. Besides, there is an additional focus of attention on finding novel enzymatic alternatives for glycoside synthesis, for which a mutated version of glycosidases, named glycosynthases, has gained much interest in recent years. RESULTS: In this work, a glucotolerant ß-glucosidase (BGL-1) from the ascomycete fungus Talaromyces amestolkiae has been heterologously expressed in Pichia pastoris, purified, and characterized. The enzyme showed good efficiency on p-nitrophenyl glucopyranoside (pNPG) (Km= 3.36 ± 0.7 mM, kcat= 898.31 s-1), but its activity on cellooligosaccharides, the natural substrates of these enzymes, was much lower, which could limit its exploitation in lignocellulose degradation applications. Interestingly, when examining the substrate specificity of BGL-1, it showed to be more active on sophorose, the ß-1,2 disaccharide of glucose, than on cellobiose. Besides, the transglycosylation profile of BGL-1 was examined, and, for expanding its synthetic capacities, it was converted into a glycosynthase. The mutant enzyme, named BGL-1-E521G, was able to use α-D-glucosyl-fluoride as donor in glycosylation reactions, and synthesized glucosylated derivatives of different pNP-sugars in a regioselective manner, as well as of some phenolic compounds of industrial interest, such as epigallocatechin gallate (EGCG). CONCLUSIONS: In this work, we report the characterization of a novel glucotolerant 1,2-ß-glucosidase, which also has a considerable activity on 1,4-ß-glucosyl bonds, that has been cloned in P. pastoris, produced, purified and characterized. In addition, the enzyme was converted into an efficient glycosynthase, able to transfer glucose molecules to a diversity of acceptors for obtaining compounds of interest. The remarkable capacities of BGL-1 and its glycosynthase mutant, both in hydrolysis and synthesis, suggest that it could be an interesting tool for biotechnological applications.


Assuntos
Talaromyces/enzimologia , beta-Glucosidase , Clonagem Molecular , Glicosilação , Hidrólise , Cinética , Fenóis/química , Saccharomycetales/genética , Especificidade por Substrato , beta-Glucosidase/biossíntese , beta-Glucosidase/química , beta-Glucosidase/isolamento & purificação
18.
Ecotoxicol Environ Saf ; 201: 110833, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32535368

RESUMO

The largest mercury (Hg) mining district in the world is located in Almadén (Spain), with well-known environmental impacts in the surrounding ecosystem. However, the impact of mercury on the health of the inhabitants of this area has not been documented accordingly. This study aims to carry out a probabilistic human health risk assessment using Bayesian modeling to estimate the non-carcinogenic risk related to Hg through multiple exposure pathways. Samples of vegetables, wild mushrooms, fish, soil, water, and air were analyzed, and adult residents were randomly surveyed to adjust the risk models to the specific population data. On the one hand, the results for the non-carcinogenic risk based on Hazard Quotient (HQ) showed unacceptable risk levels through ingestion of Hg-contaminated vegetables and fish, with HQ values 20 and 3 times higher, respectively, than the safe exposure threshold of 1 for the 97.5th percentile. On the other hand, ingestion of mushrooms, dermal contact with soil, ingestion of water, dermal contact with water and inhalation of air, were below the safety limit for the 97.5th percentile, and did not represent a risk to the health of residents. In addition, the probabilistic approach was compared with the conservative deterministic approach, and similar results were obtained. This is the first study conducted in Almadén, which clearly reveals the high levels of human health risk to which the population is exposed due to the legacy of two millennia of Hg mining.


Assuntos
Exposição Ambiental/análise , Poluentes Ambientais/análise , Mercúrio/análise , Mineração , Adulto , Agaricales/química , Ar/análise , Animais , Teorema de Bayes , Ecossistema , Peixes/metabolismo , Humanos , Distribuição Aleatória , Medição de Risco , Solo/química , Espanha , Verduras/química
19.
J Environ Manage ; 273: 111139, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768761

RESUMO

Potentially toxic elements (PTEs) present in abandoned mining wastes (AMW) are of great concern because of potential risks to human health and ecosystems. Indices of contamination (IC) applied to mining wastes are calculated using the total concentration of PTEs and comparing them with regional geochemical backgrounds. However, determining the total content of heavy metals is insufficient to assess the hazard of mining wastes. Therefore, in addition to total concentration, the potential risk is also evaluated through water mobility of elements. Accordingly, leaching procedures are useful tools for the geochemical characterization of soluble constituents that are mobilized. In this study, the solubility of PTEs from different types of mining wastes is comparatively assessed using three standard leaching methods (European; U.S. Geological Survey and; Mexican). The Hazard Average Quotient (HAQ) was calculated to assess the potential Toxicity Factor (TF). TF is an indicator of the relative potential toxicity of wastes and is the basis for the classification of AMW. A comparative assessment provides evidence that there are no statistically significant differences in PTEs solubility by the three leaching methods and it was also found that the pH of the eluates was dictated by the type of waste. Results suggest that the IC gives an indicator of the potential contamination of soils and sediments by erosive processes, or a long-term measure, whereas TF assesses the possibility of contaminating water in the short term. The most significant finding is the new ranking scale of TF, as a function of HAQ, applied to the Mexican standard leaching test. This factor, together with other considerations relating to risk-generating processes, might then be applied in places having large amounts of recorded AMW, such as the Iberian Peninsula and Latin America, where effective management is required to rank sites, based on preliminary environmental and human risk assessment.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Ecossistema , Monitoramento Ambiental , Humanos , México , Mineração
20.
Microb Cell Fact ; 18(1): 174, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601204

RESUMO

BACKGROUND: Currently, industrial societies are seeking for green alternatives to conventional chemical synthesis. This demand has merged with the efforts to convert lignocellulosic biomass into value-added products. In this context, xylan, as one of main components of lignocellulose, has emerged as a raw material with high potential for advancing towards a sustainable economy. RESULTS: In this study, the recombinant endoxylanase rXynM from the ascomycete Talaromyces amestolkiae has been heterologously expressed in Pichia pastoris and used as one of the catalysts of an enzyme cascade developed to synthesize the antiproliferative 2-(6-hydroxynaphthyl) ß-D-xylopyranoside, by transglycosylation of 2,6-dihydroxynaphthalene. The approach combines the use of two fungal xylanolytic enzymes, rXynM and the ß-xylosidase rBxTW1 from the same fungus, with the cost-effective substrate xylan. The reaction conditions for the cascade were optimized by a Central Composite Design. Maximal productions of 0.59 and 0.38 g/L were reached using beechwood xylan and birchwood xylan, respectively. For comparison, xylans from other sources were tested in the same reaction, suggesting that a specific optimization is required for each xylan variety. The results obtained using this enzyme cascade and xylan were similar or better to those previously reported for a single catalyst and xylobiose, an expensive sugar donor. CONCLUSIONS: Beechwood and birchwood xylan, two polysaccharides easily available from biomass, were used in a novel enzyme cascade to synthetize an antiproliferative agent. The approach represents a green alternative to the conventional chemical synthesis of 2-(6-hydroxynaphthyl) ß-D-xylopyranoside using a cost-effective substrate. The work highlights the role of xylan as a raw material for producing value-added products and the potential of fungal xylanolytic enzymes in the biomass conversion.


Assuntos
Endo-1,4-beta-Xilanases/biossíntese , Glicosídeos/biossíntese , Talaromyces/enzimologia , Xilanos/metabolismo , Clonagem Molecular , Naftóis , Pichia/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa