RESUMO
Organic-inorganic layered perovskites are currently some of the most promising 2D van der Waals materials. Low crystal quality usually broadens the exciton line width, obscuring the fine structure of the exciton in conventional photoluminescence experiments. Here, we propose a mechanical approach to reducing the effect of spectral diffusion by means of hBN capping on layered perovskites, revealing the exciton fine structure. We used a stochastic model to link the reduction of the spectral line width with the population of charge fluctuation centers present in the organic spacer. van der Waals forces between both lattices cause the partial clamping of the perovskite organic spacer molecules, and hence the amplitude of the overall spectral diffusion effect is reduced. Our work provides a low-cost solution to the problem of accessing important fine-structure excitonic state information, along with an explanation of the important carrier dynamics present in the organic spacer that affect the quality of the optical emission.
RESUMO
The employment of bulky aliphatic cations in the manufacture of moisture-stable materials has triggered the development and application of 2D/3D perovskites as sensitizers in moisture-stable solar cells. Although it is true that the moisture stability increases, it is also true that the photovoltaic performance of 2D/3D PVK materials is severely limited owing to quantum and dielectric confinement effects. Accordingly, it is necessary the synthesis and deep optical characterization of materials with an adequate management of dielectric contrast between the layers. Here, we demonstrate the successful tuning of dielectric confinement by the inclusion of a conjugated molecule, as a bulky cation, in the fabrication of the 2D/3D PVK material (C6H5NH3)2(CH3NH3)n-1PbnI3n+1, where n = 3 or 5. The absence of excitonic states related to n ≥ 1 at room temperature, as well as the very low concentration of excitons after 1 ps of excitation of samples in which n ≥ 3, provide strong evidence of an excellent ability to dissociate excitons into free charge carriers. As consequence films with low n, presenting higher stability than standard 3D perovskites, improved significantly their performance, showing one of the highest short circuit current density (Jsc ≈ 13.8) obtained to date for perovskite materials within the 2D limit (n < 10).
RESUMO
Gallium selenide is one of the most promising candidates to extend the window of band gap values provided by existing two-dimensional semiconductors deep into the visible potentially reaching the ultraviolet. However, the tunability of its band gap by means of quantum confinement effects is still unknown, probably due to poor nanosheet stability. Here, we demonstrate that the optical band gap band of GaSe nanosheets can be tuned by â¼120 meV from bulk to 8 nm thick. The luminescent response of very thin nanosheets (<8 nm) is strongly quenched due to early oxidation. Oxidation favors the emergence of sharp material nanospikes at the surface attributable to strain relaxation. Simultaneously, incorporated oxygen progressively replaces selenium giving rise to Ga2O3, with a residual presence of Ga2Se3 that tends to desorb. These results are relevant for the development and design of visible/ultraviolet electronics and optoelectronics with tunable functionalities based on atomically thin GaSe.
RESUMO
Manipulating properties of matter at the nanoscale is the essence of nanotechnology, which has enabled the realization of quantum dots, nanotubes, metamaterials, and two-dimensional materials with tailored electronic and optical properties. Two-dimensional semiconductors have revealed promising perspectives in nanotechnology. However, the tunability of their physical properties is challenging for semiconductors studied until now. Here we show the ability of morphological manipulation strategies, such as nanotexturing or, at the limit, important surface roughness, to enhance light absorption and the luminescent response of atomically thin indium selenide nanosheets. Besides, quantum-size confinement effects make this two-dimensional semiconductor to exhibit one of the largest band gap tunability ranges observed in a two-dimensional semiconductor: from infrared, in bulk material, to visible wavelengths, at the single layer. These results are relevant for the design of new optoelectronic devices, including heterostructures of two-dimensional materials with optimized band gap functionalities and in-plane heterojunctions with minimal junction defect density.
RESUMO
We present new kind of microwave phase shifters (MPS) based on dispersion of PbS colloidal quantum dots (QDs) in commercially available photoresist SU8 after a ligand exchange process. Ridge PbS-SU8 waveguides are implemented by integration of the nanocomposite in a silicon platform. When these waveguides are pumped at wavelengths below the band-gap of the PbS QDs, a phase shift in an optically conveyed (at 1550 nm) microwave signal is produced. The strong light confinement produced in the ridge waveguides allows an improvement of the phase shift as compared to the case of planar structures. Moreover, a novel ridge bilayer waveguide composed by a PbS-SU8 nanocomposite and a SU8 passive layer is proposed to decrease the propagation losses of the pump beam and in consequence to improve the microwave phase shift up to 36.5° at 25 GHz. Experimental results are reproduced by a theoretical model based on the slow light effect produced in a semiconductor waveguide due to the coherent population oscillations. The resulting device shows potential benefits respect to the current MPS technologies since it allows a fast tunability of the phase shift and a high level of integration due to its small size.
RESUMO
We present the mapping of the plasmonic properties of gold nanoparticles that are embedded in a TiO2 thin film deposited over two different substrates, glass and silicon. An improved electron energy-loss spectroscopy (EELS) imaging technique was used to extract plasmon maps with nanometre resolution. Several representative cases of randomly dispersed NPs have been examined to carefully evaluate surrounding effects on the optical response of such nanostructured material. Data were compared to analytical calculations and showed good agreement. These results validate previous structural and far-field optical results and provide a clear description of the optical phenomena that take place at a nanometre scale in these materials. They are of primary importance for enlightening the way to the fabrication of thin film materials including metallic nanostructures for photovoltaic applications.
RESUMO
In this work, we propose the use of the Hanbury-Brown and Twiss interferometric technique and a switchable two-color excitation method for evaluating the exciton and noncorrelated electron-hole dynamics associated with single photon emission from indium arsenide (InAs) self-assembled quantum dots (QDs). Using a microstate master equation model we demonstrate that our single QDs are described by nonlinear exciton dynamics. The simultaneous detection of two-color, single photon emission from InAs QDs using these nonlinear dynamics was used to design a NOT AND logic transference function. This computational functionality combines the advantages of working with light/photons as input/output device parameters (all-optical system) and that of a nanodevice (QD size of â¼ 20 nm) while also providing high optical sensitivity (ultralow optical power operational requirements). These system features represent an important and interesting step toward the development of new prototypes for the incoming quantum information technologies.
RESUMO
[This corrects the article DOI: 10.1021/acsenergylett.3c02426.].
RESUMO
The development of random lasing (RL) with predictable and controlled properties is an important step to make these cheap optical sources stable and reliable. However, the design of tailored RL characteristics (emission energy, threshold, number of modes) is only obtained with complex photonic structures, while the simplest optical configurations able to tune the RL are still a challenge. This work demonstrates the tuning of the RL characteristics in spin-coated and inkjet-printed tin-based perovskites integrated into a vertical cavity with low quality factor. When the cavity mode is resonant with the photoluminescence (PL) peak energy, standard vertical lasing is observed. More importantly, single mode RL operation with the lowest threshold and a quality factor as high as 1 000 (twenty times the quality factor of the resonator) is obtained if the cavity mode lies above the PL peak energy due to higher gain. These results can have important technological implications toward the development of low-cost RL sources without chaotic behavior.
RESUMO
A study based on photoluminescence and absorption measurements as a function of temperature and pressure for PbSe nanocrystals with sizes in the range 3-13 nm reveals the influence of size quantum confinement on the observed variation. In the case of the temperature variation, the effective bandgap changes from showing a positive rate of change to showing a negative one (for a quantum dot 3 nm in diameter), which can be accounted for by incorporating a linear variation of the carrier effective masses into a simple calculation of the exciton ground state in the quantum dot. In the case of the pressure variation, we observe a clear inverse correlation between the absolute value of the pressure coefficient and the nanocrystal size, a signature of quantum size confinement, with values changing from -76 to -41 meV GPa⻹ for quantum dots ranging from 13 to 3 nm in diameter, respectively, clearly smaller in absolute value than the rate for bulk PbSe (-84 meV GPa⻹). We used again the hypothesis of a linear variation of the carrier effective masses with pressure in order to fit this experimental variation quantitatively.
RESUMO
An unusual spectrally reproducible near-IR random lasing (RL) with no fluctuation of lasing peak wavelength is disclosed in polycrystalline films of formamidinium tin triiodide perovskite, which have been chemically stabilized against Sn2+ to Sn4+ oxidation. Remarkably, a quality Q-factor as high as ≈104 with an amplified spontaneous emission (ASE) threshold as low as 2 µJ cm-2 (both at 20 K) are achieved. The observed spectral reproducibility is unprecedented for semiconductor thin film RL systems and cannot be explained by the strong spatial localization of lasing modes. Instead, it is suggested that the spectral stability is a result of such an unique property of Sn-based perovskites as a large inhomogeneous broadening of the emitting centers, which is a consequence of an intrinsic structural inhomogeneity of the material. Due to this, lasing can occur simultaneously in modes that are spatially strongly overlapped, as long as the spectral separation between the modes is larger than the homogeneous linewidth of the emitting centers. The discovered mechanism of RL spectral stability in semiconductor materials, possessing inhomogeneous broadening, opens up prospects for their practical use as cheap sources of narrow laser lines.
RESUMO
For the first time, large-area, flexible organic-inorganic tin perovskite solar modules are fabricated by means of an industry-compatible and scalable blade-coating technique. An 8-cell interconnected mini module with dimensions of 25 cm2 (active area = 8 × 1.5 cm2) reached 5.7% power conversion efficiency under 1000 W/m2 (AM 1.5G) and 9.4% under 2000 lx (white-LED).
RESUMO
The spontaneous emission rate and Purcell factor of self-assembled quantum wires embedded in photonic crystal micro-cavities are measured at 80 K by using micro-photoluminescence, under transient and steady state excitation conditions. The Purcell factors fall in the range 1.1 - 2 despite the theoretical prediction of ≈15.5 for the figure of merit. We explain this difference by introducing a polarization dependence on the cavity orientation, parallel or perpendicular with respect to the wire axis, plus spectral and spatial detuning factors for the emitters and the cavity modes, taking in account the finite size of the quantum wires.
Assuntos
Arsenicais/química , Índio/química , Nanopartículas/química , Fosfinas/química , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Nanopartículas/ultraestruturaRESUMO
This paper reports the formation and characterization of spherical GaAs quantum dots obtained by nanosecond pulsed laser ablation in a liquid (ethanol or methanol). The produced bare GaAs nanoparticles demonstrate rather narrow size distribution which depends on the applied laser power density (from 4.25 to 13.9 J/cm2 in our experiments) and is as low as 2.5 nm for the highest power used. The absolute value of the average diameter also decreases significantly, from 13.7 to 8.7 nm, as the laser power increases in this interval. Due to the narrow nanoparticle size dispersion achieved at the highest laser powers two absorption band edges are clearly distinguishable at about 1.72 and 3.15 eV which are ascribed to E0 and E1 effective optical transitions, respectively. A comparison of the energies with those known for bulk GaAs allows one to conclude that an average diameter of the investigated GaAs nanoparticles is close to 10 nm, i.e., they are quantum dots. High resolution transmission electron microscopy (HRTEM) images show that the bare GaAs nanoparticles are nanocrystalline, but many of them exhibit single/multiple twin boundary defects or even polycrystallinity. The formation of the GaAs crystalline core capped with a SiO2 shell was demonstrated by HRTEM and energy dispersive X-ray (EDX) spectroscopy. Effective band edges can be better distinguished in SiO2 capped nanoparticles than in bare ones, In both cases the band edges are correlated with size quantum confinement effect.
RESUMO
In this work, we demonstrate, theoretically and experimentally, a hybrid dielectric-plasmonic multifunctional structure able to provide full control of the emission properties of CsPbI3 perovskite nanocrystals (PNCs). The device consists of a hyperbolic metamaterial (HMM) composed of alternating thin metal (Ag) and dielectric (LiF) layers, covered by TiO2 spherical MIE nanoresonators (i.e., the nanoantenna). An optimum HMM leads to a certain Purcell effect, i.e., an increase in the exciton radiative rate, but the emission intensity is reduced due to the presence of metal in the HMM. The incorporation of TiO2 nanoresonators deposited on the top of the HMM is able to counteract such an undesirable intensity reduction by the coupling between the exciton and the MIE modes of the dielectric nanoantenna. More importantly, MIE nanoresonators result in a preferential light emission towards the normal direction to the HMM plane, increasing the collected signal by more than one order of magnitude together with a further increase in the Purcell factor. These results will be useful in quantum information applications involving single emitters based on PNCs together with a high exciton emission rate and intensity.
RESUMO
We have designed a synthesis procedure to obtain Cs2SnCl6 nanocrystals (NCs) doped with metal ion(s) to emit visible light. Cs2SnCl6 NCs doped with Bi3+, Te4+ and Sb3+ ions emitted blue, yellow and red light, respectively. In addition, NCs simultaneously doped with Bi3+ and Te4+ ions were synthesized in a single run. Combination of both dopant ions together gives rise to the white emission. The photoluminescence quantum yields of the blue, yellow and white emissions are up to 26.5, 28, and 16.6%, respectively under excitation at 350, 390, and 370 nm. Pure white-light emission with CIE chromaticity coordinates of (0.32, 0.33) and (0.32, 0.32) at 340 and 370 nm excitation wavelength, respectively, was obtained. The as-prepared NCs were found to demonstrate a long-time stability, resistance to humidity, and an ability to be well-dispersed in polar solvents without property degradation due to their hydrophilicity, which could be of significant interest for wide application purposes.
RESUMO
Despite the promising properties of tin-based halide perovskites, one clear limitation is the fast Sn+2 oxidation. Consequently, the preparation of long-lasting devices remains challenging. Here, we report a chemical engineering approach, based on adding Dipropylammonium iodide (DipI) together with a well-known reducing agent, sodium borohydride (NaBH4), aimed at preventing the premature degradation of Sn-HPs. This strategy allows for obtaining efficiencies (PCE) above 10% with enhanced stability. The initial PCE remained unchanged upon 5 h in air (60% RH) at maximum-power-point (MPP). Remarkably, 96% of the initial PCE was kept after 1,300 h at MPP in N2. To the best of our knowledge, these are the highest reported values for Sn-based solar cells. Our findings demonstrate a beneficial synergistic effect when additives are incorporated, highlight the important role of iodide in the performance upon light soaking, and, ultimately, unveil the relevance of controlling the halide chemistry for future improvement of Sn-based perovskite devices.
RESUMO
An outstanding potentiality of layered two-dimensional (2D) organic-inorganic hybrid perovskites (2DHPs) is in the development of solar cells, photodetectors, and light-emitting diodes. In 2DHPs, an exciton is localized in an atomically thin lead(II) halide inorganic layer of sub-nanometer thickness as in a quantum well sandwiched between organic layers as energetic and dielectric barriers. In previous years, versatile optical characterization of 2DHPs has been carried out mainly for thin flakes of single crystals and ultrathin (of the order of 20 nm) polycrystalline films, whereas there is a lack of optical characterization of thick (hundreds of nanometers) polycrystalline films, fundamentals for fabrication of devices. Here, with the use of photoluminescence (PL) and absorption spectroscopies, we studied the exciton behavior in â¼200 nm polycrystalline thin films of 2D perovskite (PEA)2PbI4, where PEA is phenethylammonium. Contrary to the case of ultrathin films, we have found that peak energies and line width of the excitonic bands in our films demonstrate unusual extremely weak sensitivity to temperature in 20-300 K diapason. The excitonic PL band is characterized by a significant (â¼30 meV) Stokes shift with respect to the corresponding absorption band as well as by a full absence of the exciton fine structure at cryogenic temperatures. We suggest that the observed effects are due to the large inhomogeneous broadening of the excitonic PL and absorption bands resulting from the (PEA)2PbI4 band gap energy dependence on the number of lead(II) halide layers of individual crystallites. The characteristic time of the exciton energy funneling from higher- to lower-energy crystallites within (PEA)2PbI4 polycrystalline thin films is about 100 ps.
RESUMO
Hexagonal boron nitride (hBN) is a wide-band gap van der Waals material able to host light-emitting centers behaving as single photon sources. Here, we report the generation of color defects in hBN nanosheets dispersed on different kinds of substrates by thermal treatment processes. The optical properties of these defects have been studied using microspectroscopy techniques and far-field simulations of their light emission. Using these techniques, we have found that subsequent ozone treatments of the deposited hBN nanosheets improve the optical emission properties of created defects, as revealed by their zero-phonon linewidth narrowing and reduction of background emission. Microlocalized color defects deposited on dielectric substrates show bright (≈1 MHz) and stable room-temperature light emission with zero-phonon line peak energy varying from 1.56 to 2.27 eV, being the most probable value 2.16 eV. In addition to this, we have observed a substrate dependence of the optical performance of the generated color defects. The energy range of the emitters prepared on gold substrates is strongly reduced, as compared to that observed in dielectric substrates or even alumina. We attribute this effect to the quenching of low-energy color defects (these of energies lower than 1.9 eV) when gold substrates are used, which reveals the surface nature of the defects created in hBN nanosheets. Results described here are important for future quantum light experiments and their integration in photonic chips.
RESUMO
Here we describe a simple, powerful technique based on the laser ablation of a target immersed in a water solution of a metal salt. With this method, nanoparticles of different metals and alloys can be processed very quickly. Both the target and the salt solution can be chosen to produce metal nanoparticles of different sizes, surface-oxidized nanoparticles (silica-silver, for example), or even more complex structures to be defined by the researcher on one or more steps because the technique combines the advantages of both physical and chemical methods. We have applied this technique to the fabrication of inert silica-metal (silver, gold, and silver-gold) nanoparticles with a strong surface plasmon resonance all together in a single step. The advantage of the simultaneous production of silica during laser ablation is the stabilization of the metal nanoparticle colloid but also the possibility to reduce the toxicity of these nanoparticles.