Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Environ Microbiol ; 24(11): 5248-5260, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36382795

RESUMO

Iron participates as an essential cofactor in the biosynthesis of critical cellular components, including DNA, proteins and lipids. The ergosterol biosynthetic pathway, which is an important target of antifungal treatments, depends on iron in four enzymatic steps. Our results in the model yeast Saccharomyces cerevisiae show that the expression of ergosterol biosynthesis (ERG) genes is tightly modulated by iron availability probably through the iron-dependent variation of sterol and heme levels. Whereas the transcription factors Upc2 and Ecm22 are responsible for the activation of ERG genes upon iron deficiency, the heme-dependent factor Hap1 triggers their Tup1-mediated transcriptional repression. The combined regulation by both activating and repressing regulatory factors allows for the fine-tuning of ERG transcript levels along the progress of iron deficiency, avoiding the accumulation of toxic sterol intermediates and enabling efficient adaptation to rapidly changing conditions. The lack of these regulatory factors leads to changes in the yeast sterol profile upon iron-deficient conditions. Both environmental iron availability and specific regulatory factors should be considered in ergosterol antifungal treatments.


Assuntos
Deficiências de Ferro , Proteínas de Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Antifúngicos/metabolismo , Ergosterol/metabolismo , Regulação Fúngica da Expressão Gênica , Esteróis , Heme/metabolismo , Ferro/metabolismo , Fatores de Transcrição/genética
2.
Int J Mol Sci ; 23(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36430442

RESUMO

Iron is an indispensable element that participates as an essential cofactor in multiple biological processes. However, when present in excess, iron can engage in redox reactions that generate reactive oxygen species that damage cells at multiple levels. In this report, we characterized the response of budding yeast species from the Saccharomyces genus to elevated environmental iron concentrations. We have observed that S. cerevisiae strains are more resistant to high-iron concentrations than Saccharomyces non-cerevisiae species. Liquid growth assays showed that species evolutionarily closer to S. cerevisiae, such as S. paradoxus, S. jurei, S. mikatae, and S. arboricola, were more resistant to high-iron levels than the more distant species S. eubayanus and S. uvarum. Remarkably, S. kudriavzevii strains were especially iron sensitive. Growth assays in solid media suggested that S. cerevisiae and S. paradoxus were more resistant to the oxidative stress caused by elevated iron concentrations. When comparing iron accumulation and sensitivity, different patterns were observed. As previously described for S. cerevisiae, S. uvarum and particular strains of S. kudriavzevii and S. paradoxus became more sensitive to iron while accumulating more intracellular iron levels. However, no remarkable changes in intracellular iron accumulation were observed for the remainder of species. These results indicate that different mechanisms of response to elevated iron concentrations exist in the different species of the genus Saccharomyces.


Assuntos
Saccharomyces , Saccharomyces cerevisiae , Adaptação Fisiológica , Aclimatação , Ferro
3.
PLoS Genet ; 14(6): e1007476, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29912874

RESUMO

In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are essential for translational repression. We show that the role played by Cth2 as a negative translational regulator extends to other mRNA targets such as WTM1, CCP1 and HEM15. A structure-function analysis of Cth2 protein suggests that the Cth2 amino-terminal domain (NTD) is important for both mRNA turnover and translation inhibition, while its carboxy-terminal domain (CTD) only participates in the regulation of translation, but is dispensable for mRNA degradation. Finally, we demonstrate that the Cth2 CTD is physiologically relevant for adaptation to iron deficiency.


Assuntos
Deficiências de Ferro , Ferro/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo , Elementos Ricos em Adenilato e Uridilato , Adaptação Biológica/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Estabilidade de RNA/genética , RNA Mensageiro/genética , Sequências Reguladoras de Ácido Ribonucleico , Fatores de Transcrição/genética
4.
Proc Natl Acad Sci U S A ; 115(27): E6291-E6300, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915044

RESUMO

Cells respond to iron deficiency by activating iron-regulatory proteins to increase cellular iron uptake and availability. However, it is not clear how cells adapt to conditions when cellular iron uptake does not fully match iron demand. Here, we show that the mRNA-binding protein tristetraprolin (TTP) is induced by iron deficiency and degrades mRNAs of mitochondrial Fe/S-cluster-containing proteins, specifically Ndufs1 in complex I and Uqcrfs1 in complex III, to match the decrease in Fe/S-cluster availability. In the absence of TTP, Uqcrfs1 levels are not decreased in iron deficiency, resulting in nonfunctional complex III, electron leakage, and oxidative damage. Mice with deletion of Ttp display cardiac dysfunction with iron deficiency, demonstrating that TTP is necessary for maintaining cardiac function in the setting of low cellular iron. Altogether, our results describe a pathway that is activated in iron deficiency to regulate mitochondrial function to match the availability of Fe/S clusters.


Assuntos
Deficiências de Ferro , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , NADH Desidrogenase/metabolismo , Tristetraprolina/metabolismo , Animais , Linhagem Celular , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Ferro-Enxofre/genética , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/enzimologia , NADH Desidrogenase/genética , Oxirredução , Tristetraprolina/genética
5.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379337

RESUMO

Translation elongation factor eIF5A binds to ribosomes to promote peptide bonds between problematic amino acids for the reaction like prolines. eIF5A is highly conserved and essential in eukaryotes, which usually contain two similar but differentially expressed paralogue genes. The human eIF5A-1 isoform is abundant and implicated in some cancer types; the eIF5A-2 isoform is absent in most cells but becomes overexpressed in many metastatic cancers. Several reports have connected eIF5A and mitochondria because it co-purifies with the organelle or its inhibition reduces respiration and mitochondrial enzyme levels. However, the mechanisms of eIF5A mitochondrial function, and whether eIF5A expression is regulated by the mitochondrial metabolism, are unknown. We analysed the expression of yeast eIF5A isoforms Tif51A and Tif51B under several metabolic conditions and in mutants. The depletion of Tif51A, but not Tif51B, compromised yeast growth under respiration and reduced oxygen consumption. Tif51A expression followed dual positive regulation: by high glucose through TORC1 signalling, like other translation factors, to promote growth and by low glucose or non-fermentative carbon sources through Snf1 and heme-dependent transcription factor Hap1 to promote respiration. Upon iron depletion, Tif51A was down-regulated and Tif51B up-regulated. Both were Hap1-dependent. Our results demonstrate eIF5A expression regulation by cellular metabolic status.


Assuntos
Nutrientes , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Aerobiose/efeitos dos fármacos , Carbono/farmacologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Fermentação/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Heme/metabolismo , Ferro/metabolismo , Deficiências de Ferro , Lisina/análogos & derivados , Lisina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Análise do Fluxo Metabólico , Modelos Biológicos , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Fator de Iniciação de Tradução Eucariótico 5A
6.
Curr Genet ; 65(1): 139-145, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30128746

RESUMO

Iron participates as a vital cofactor in multiple metabolic pathways. Despite its abundance, iron bioavailability is highly restricted in aerobic and alkaline environments. Therefore, living organisms have evolved multiple adaptive mechanisms to respond to iron scarcity. These strategies include a global remodeling of iron metabolism directed to optimize iron utilization. In the baker's yeast Saccharomyces cerevisiae, this metabolic reorganization is accomplished to a large extent by an mRNA-binding protein called Cth2. Yeast Cth2 belongs to a conserved family of tandem zinc finger containing proteins that specifically bind to transcripts with AU-rich elements and promote their turnover. A recent study has revealed that Cth2 also inhibits the translation of its target mRNAs (Ramos-Alonso et al., PLoS Genet 14:e1007476, https://doi.org/10.1371/journal.pgen.1007476 , 2018). Interestingly, the mammalian Cth2 ortholog known as tristetraprolin (aka TTP/TIS11/ZFP36), which is also implicated in controlling iron metabolism, promotes the decay and prevents the translation of its regulated transcripts. These observations open the possibility to study the relative contribution of altering mRNA stability and translation to the physiological adaptation to iron deficiency, the function played by the different domains within the mRNA-binding protein, and the potential factors implicated in coordinating both post-transcriptional events.


Assuntos
Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Biossíntese de Proteínas , Estabilidade de RNA , Saccharomyces cerevisiae/genética , Adaptação Fisiológica/genética , Animais , Humanos , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(6): 657-668, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29627385

RESUMO

Unsaturated fatty acids (UFA) are essential components of phospholipids that greatly contribute to the biophysical properties of cellular membranes. Biosynthesis of UFAs relies on a conserved family of iron-dependent fatty acid desaturases, whose representative in the model yeast Saccharomyces cerevisiae is Ole1. OLE1 expression is tightly regulated to adapt UFA biosynthesis and lipid bilayer properties to changes in temperature, and in UFA or oxygen availability. Despite iron deficiency being the most extended nutritional disorder worldwide, very little is known about the mechanisms and the biological relevance of fatty acid desaturases regulation in response to iron starvation. In this report, we show that endoplasmic reticulum-anchored transcription factor Mga2 activates OLE1 transcription in response to nutritional and genetic iron deficiencies. Cells lacking MGA2 display low UFA levels and do not grow under iron-limited conditions, unless UFAs are supplemented or OLE1 is overexpressed. The proteasome, E3 ubiquitin ligase Rsp5 and the Cdc48Npl4/Ufd1 complex are required for OLE1 activation during iron depletion. Interestingly, Mga2 also activates the transcription of its own mRNA in response to iron deficiency, hypoxia, low temperature and low UFAs. MGA2 up-regulation contributes to increase OLE1 expression in these situations. These results reveal the mechanism of OLE1 regulation when iron is scarce and identify the MGA2 auto-regulation as a potential activation strategy in multiple stresses.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Deficiências de Ferro , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Membrana/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Estearoil-CoA Dessaturase , Fatores de Transcrição/genética , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
8.
World J Microbiol Biotechnol ; 33(4): 75, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28315258

RESUMO

Iron is a redox active element that functions as an essential cofactor in multiple metabolic pathways, including respiration, DNA synthesis and translation. While indispensable for eukaryotic life, excess iron can lead to oxidative damage of macromolecules. Therefore, living organisms have developed sophisticated strategies to optimally regulate iron acquisition, storage and utilization in response to fluctuations in environmental iron bioavailability. In the yeast Saccharomyces cerevisiae, transcription factors Aft1/Aft2 and Yap5 regulate iron metabolism in response to low and high iron levels, respectively. In addition to producing and assembling iron cofactors, mitochondrial iron-sulfur (Fe/S) cluster biogenesis has emerged as a central player in iron sensing. A mitochondrial signal derived from Fe/S synthesis is exported and converted into an Fe/S cluster that interacts directly with Aft1/Aft2 and Yap5 proteins to regulate their transcriptional function. Various conserved proteins, such as ABC mitochondrial transporter Atm1 and, for Aft1/Aft2, monothiol glutaredoxins Grx3 and Grx4 are implicated in this iron-signaling pathway. The analysis of a wide range of S. cerevisiae strains of different geographical origins and sources has shown that yeast strains adapted to high iron display growth defects under iron-deficient conditions, and highlighted connections that exist in the response to both opposite conditions. Changes in iron accumulation and gene expression profiles suggest differences in the regulation of iron homeostasis genes.


Assuntos
Ferro/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Regulação Fúngica da Expressão Gênica , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Enxofre/metabolismo , Fatores de Transcrição/metabolismo
9.
Appl Environ Microbiol ; 82(10): 3052-3060, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26969708

RESUMO

UNLABELLED: Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in ccc1Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and ccc1Δ yeast cells at certain environmental iron concentrations. IMPORTANCE: Iron deficiency is a worldwide nutritional disorder to which women and children are especially vulnerable. A common strategy to combat iron deficiency consists of dietary supplementation with inorganic iron salts, whose bioavailability is very low. Iron-enriched yeasts and cereals are alternative strategies to diminish iron deficiency. Animals and plants possess large ferritin complexes that accumulate, detoxify, or buffer excess cellular iron. However, the yeast Saccharomyces cerevisiae lacks ferritin and uses vacuoles as iron storage organelles. Here, we explored how soybean ferritin expression influenced yeast iron metabolism, confirming that yeasts that express soybean seed ferritin could be explored as a novel strategy to increase dietary iron absorption.


Assuntos
Ferritinas/metabolismo , Ferro/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Clonagem Molecular , Ferritinas/genética , Expressão Gênica , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Glycine max/enzimologia , Glycine max/genética
10.
Appl Environ Microbiol ; 82(6): 1906-1916, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773083

RESUMO

Iron is an essential micronutrient for all eukaryotic organisms. However, the low solubility of ferric iron has tremendously increased the prevalence of iron deficiency anemia, especially in women and children, with dramatic consequences. Baker's yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, a fermentative microorganism, and a feed supplement. In this report, we explore the genetic diversity of 123 wild and domestic strains of S. cerevisiae isolated from different geographical origins and sources to characterize how yeast cells respond to elevated iron concentrations in the environment. By using two different forms of iron, we selected and characterized both iron-sensitive and iron-resistant yeast strains. We observed that when the iron concentration in the medium increases, iron-sensitive strains accumulate iron more rapidly than iron-resistant isolates. We observed that, consistent with excess iron leading to oxidative stress, the redox state of iron-sensitive strains was more oxidized than that of iron-resistant strains. Growth assays in the presence of different oxidative reagents ruled out that this phenotype was due to alterations in the general oxidative stress protection machinery. It was noteworthy that iron-resistant strains were more sensitive to iron deficiency conditions than iron-sensitive strains, which suggests that adaptation to either high or low iron is detrimental for the opposite condition. An initial gene expression analysis suggested that alterations in iron homeostasis genes could contribute to the different responses of distant iron-sensitive and iron-resistant yeast strains to elevated environmental iron levels.


Assuntos
Ferro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Perfilação da Expressão Gênica , Estresse Oxidativo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
11.
Dev Biol ; 383(1): 158-73, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24055171

RESUMO

The products of Hox genes function in assigning positional identity along the anterior-posterior body axis during animal development. In mouse embryos, Hox genes located at the 3' end of HoxA and HoxB complexes are expressed in nested patterns in the progenitors of the secondary heart field during early cardiogenesis and the combined activities of both of these clusters are required for proper looping of the heart. Using Hox bacterial artificial chromosomes (BACs), transposon reporters, and transgenic analyses in mice, we present the identification of several novel enhancers flanking the HoxB complex which can work over a long range to mediate dynamic reporter expression in the endoderm and embryonic heart during development. These enhancers respond to exogenously added retinoic acid and we have identified two retinoic acid response elements (RAREs) within these control modules that play a role in potentiating their regulatory activity. Deletion analysis in HoxB BAC reporters reveals that these control modules, spread throughout the flanking intergenic region, have regulatory activities that overlap with other local enhancers. This suggests that they function as shadow enhancers to modulate the expression of genes from the HoxB complex during cardiac development. Regulatory analysis of the HoxA complex reveals that it also has enhancers in the 3' flanking region which contain RAREs and have the potential to modulate expression in endoderm and heart tissues. Together, the similarities in their location, enhancer output, and dependence on retinoid signaling suggest that a conserved cis-regulatory cassette located in the 3' proximal regions adjacent to the HoxA and HoxB complexes evolved to modulate Hox gene expression during mammalian cardiac and endoderm development. This suggests a common regulatory mechanism, whereby the conserved control modules act over a long range on multiple Hox genes to generate nested patterns of HoxA and HoxB expression during cardiogenesis.


Assuntos
Endoderma/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Coração/embriologia , Proteínas de Homeodomínio/metabolismo , Miocárdio/metabolismo , Animais , Cromossomos Artificiais Bacterianos , Biologia Computacional , Endoderma/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Genômica , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Microinjeções , Oligonucleotídeos/genética , Gravidez , Elementos de Resposta/genética , Tretinoína/metabolismo , beta-Galactosidase
12.
Int J Mol Sci ; 14(8): 15785-809, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23903042

RESUMO

Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in a wide variety of biological processes. Recent studies in Saccharomyces cerevisiae have shown that in response to iron deficiency, an RNA-binding protein denoted Cth2 coordinates a global metabolic rearrangement that aims to optimize iron utilization. The Cth2 protein contains two Cx8Cx5Cx3H tandem zinc fingers (TZFs) that specifically bind to adenosine/uridine-rich elements within the 3' untranslated region of many mRNAs to promote their degradation. The Cth2 protein shuttles between the nucleus and the cytoplasm. Once inside the nucleus, Cth2 binds target mRNAs and stimulates alternative 3' end processing. A Cth2/mRNA-containing complex is required for export to the cytoplasm, where the mRNA is degraded by the 5' to 3' degradation pathway. This post-transcriptional regulatory mechanism limits iron utilization in nonessential pathways and activates essential iron-dependent enzymes such as ribonucleotide reductase, which is required for DNA synthesis and repair. Recent findings indicate that the TZF-containing tristetraprolin protein also functions in modulating human iron homeostasis. Elevated iron concentrations can also be detrimental for cells. The Rnt1 RNase III exonuclease protects cells from excess iron by promoting the degradation of a subset of the Fe acquisition system when iron levels rise.


Assuntos
Ferro/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiões 3' não Traduzidas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
13.
Biochim Biophys Acta Gene Regul Mech ; 1866(3): 194959, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37453649

RESUMO

Sterol synthesis is an iron-dependent metabolic pathway in eukaryotes. Consequently, fungal ergosterol biosynthesis (ERG) is down-regulated in response to iron deficiency. In this report, we show that, upon iron limitation or overexpression of the iron-regulated mRNA-binding protein Cth2, the yeast Saccharomyces cerevisiae down-regulates the three initial enzymatic steps of ergosterol synthesis (ERG1, ERG7 and ERG11). Mechanistically, we show that Cth2 protein limits the translation and promotes the decrease in the mRNA levels of these specific ERG genes, which contain consensus Cth2-binding sites defined as AU-rich elements (AREs). Thus, expression of CTH2 leads to the accumulation of initial sterol intermediates, such as squalene, and to the drop of ergosterol levels. Changes in CTH2 expression levels disturb the response of yeast cells to stresses related to membrane integrity such as high ethanol and sorbitol concentrations. Therefore, CTH2 should be considered as a critical regulatory factor of ergosterol biosynthesis during iron deficiency.


Assuntos
Deficiências de Ferro , Proteínas de Saccharomyces cerevisiae , Humanos , Ergosterol/metabolismo , Ferro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
14.
Nat Cell Biol ; 25(10): 1478-1494, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37749225

RESUMO

All eukaryotic cells require a minimal iron threshold to sustain anabolic metabolism. However, the mechanisms by which cells sense iron to regulate anabolic processes are unclear. Here we report a previously undescribed eukaryotic pathway for iron sensing in which molecular iron is required to sustain active histone demethylation and maintain the expression of critical components of the pro-anabolic mTORC1 pathway. Specifically, we identify the iron-binding histone-demethylase KDM3B as an intrinsic iron sensor that regulates mTORC1 activity by demethylating H3K9me2 at enhancers of a high-affinity leucine transporter, LAT3, and RPTOR. By directly suppressing leucine availability and RAPTOR levels, iron deficiency supersedes other nutrient inputs into mTORC1. This process occurs in vivo and is not an indirect effect by canonical iron-utilizing pathways. Because ancestral eukaryotes share homologues of KDMs and mTORC1 core components, this pathway probably pre-dated the emergence of the other kingdom-specific nutrient sensors for mTORC1.


Assuntos
Histonas , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Leucina/metabolismo , Histonas/genética , Histonas/metabolismo , Ferro/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Desmetilação
15.
Microb Biotechnol ; 15(11): 2705-2716, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35837730

RESUMO

Ergosterol is a specific sterol component of yeast and fungal membranes. Its biosynthesis is one of the most effective targets for antifungal treatments. However, the emergent resistance to multiple sterol-based antifungal drugs emphasizes the need for new therapeutic approaches. The allylamine terbinafine, which selectively inhibits squalene epoxidase Erg1 within the ergosterol biosynthetic pathway, is mainly used to treat dermatomycoses, whereas its effectiveness in other fungal infections is limited. Given that ergosterol biosynthesis depends on iron as an essential cofactor, in this report, we used the yeast Saccharomyces cerevisiae to investigate how iron bioavailability influences Erg1 expression and terbinafine susceptibility. We observed that both chemical and genetic depletion of iron decrease ERG1 expression, leading to an increase in terbinafine susceptibility. Deletion of either ROX1 transcriptional repressor or CTH1 and CTH2 post-transcriptional repressors of ERG1 expression led to an increase in Erg1 protein levels and terbinafine resistance. On the contrary, overexpression of CTH2 led to the opposite effect, lowering Erg1 levels and increasing terbinafine susceptibility. Although strain-specific particularities exist, opportunistic pathogenic strains of S. cerevisiae displayed a response similar to the laboratory strain. These data indicate that iron bioavailability and particular regulatory factors could be used to modulate susceptibility to terbinafine.


Assuntos
Antifúngicos , Saccharomyces cerevisiae , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Disponibilidade Biológica , Ergosterol/metabolismo , Ergosterol/farmacologia , Ferro/metabolismo , Naftalenos/farmacologia , Naftalenos/metabolismo , Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo , Terbinafina/farmacologia , Terbinafina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Biochim Biophys Acta Gene Regul Mech ; 1865(2): 194800, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35218933

RESUMO

Eukaryotic cells rely on iron as an indispensable cofactor for multiple biological functions including mitochondrial respiration and protein synthesis. The budding yeast Saccharomyces cerevisiae utilizes both transcriptional and posttranscriptional mechanisms to couple mRNA levels to the requirements of iron deprivation. Thus, in response to iron deficiency, transcription factors Aft1 and Aft2 activate the expression of genes implicated in iron acquisition and mobilization, whereas two mRNA-binding proteins, Cth1 and Cth2, posttranscriptionally control iron metabolism. By using a genome-wide approach, we describe here a global stabilization of mRNAs, including transcripts encoding ribosomal proteins (RPs), when iron bioavailability diminishes. mRNA decay assays indicate that the mRNA-binding protein Pub1 contributes to RP transcript stabilization during adaptation to iron limitation. In fact, Pub1 becomes critical for growth and translational repression in low-iron conditions. Remarkably, we observe that pub1Δ cells also exhibit an increase in the transcription of RP genes that evidences the crosstalk between transcription and degradation mechanisms to maintain the appropriate mRNA balance under iron deficiency conditions.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Proteínas de Ligação a Poli(A)/genética , Proteínas de Ligação a Poli(A)/metabolismo , Estabilidade de RNA/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
17.
Cell Rep ; 40(3): 111113, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858543

RESUMO

Iron dyshomeostasis contributes to aging, but little information is available about the molecular mechanisms. Here, we provide evidence that in Saccharomyces cerevisiae, aging is associated with altered expression of genes involved in iron homeostasis. We further demonstrate that defects in the conserved mRNA-binding protein Cth2, which controls stability and translation of mRNAs encoding iron-containing proteins, increase lifespan by alleviating its repressive effects on mitochondrial function. Mutation of the conserved cysteine residue in Cth2 that inhibits its RNA-binding activity is sufficient to confer longevity, whereas Cth2 gain of function shortens replicative lifespan. Consistent with its function in RNA degradation, Cth2 deficiency relieves Cth2-mediated post-transcriptional repression of nuclear-encoded components of the electron transport chain. Our findings uncover a major role of the RNA-binding protein Cth2 in the regulation of lifespan and suggest that modulation of iron starvation signaling can serve as a target for potential aging interventions.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Tristetraprolina/metabolismo , Regulação Fúngica da Expressão Gênica , Ferro/metabolismo , Longevidade , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tristetraprolina/genética
18.
Microorganisms ; 9(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068342

RESUMO

Iron is an essential element for all eukaryotes, since it acts as a cofactor for many enzymes involved in basic cellular functions, including translation. While the mammalian iron-regulatory protein/iron-responsive element (IRP/IRE) system arose as one of the first examples of translational regulation in higher eukaryotes, little is known about the contribution of iron itself to the different stages of eukaryotic translation. In the yeast Saccharomyces cerevisiae, iron deficiency provokes a global impairment of translation at the initiation step, which is mediated by the Gcn2-eIF2α pathway, while the post-transcriptional regulator Cth2 specifically represses the translation of a subgroup of iron-related transcripts. In addition, several steps of the translation process depend on iron-containing enzymes, including particular modifications of translation elongation factors and transfer RNAs (tRNAs), and translation termination by the ATP-binding cassette family member Rli1 (ABCE1 in humans) and the prolyl hydroxylase Tpa1. The influence of these modifications and their correlation with codon bias in the dynamic control of protein biosynthesis, mainly in response to stress, is emerging as an interesting focus of research. Taking S. cerevisiae as a model, we hereby discuss the relevance of iron in the control of global and specific translation steps.

19.
Genes (Basel) ; 12(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34440294

RESUMO

Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in multiple metabolic processes. Iron bioavailability is highly restricted due to the low solubility of its oxidized form, frequently leading to iron deficiency anemia. The baker's yeast Saccharomyces cerevisiae is used as a model organism for iron homeostasis studies, but also as a food supplement and fermentative microorganism in the food industry. Yeast cells use the vacuolar Ccc1 transporter to detoxify and store excess iron in the vacuoles. Here, we modulate CCC1 expression and properties to increase iron extraction from the environment. We show that constitutive expression of full-length CCC1 is toxic, whereas deletion of its cytosolic amino-terminal (Nt) domain (NtΔCCC1) rescues this phenotype. Toxicity is exacerbated in cells lacking AFT1 transcription factor. Further characterization of NtΔCcc1 protein suggests that it is a partially functional protein. Western blot analyses indicate that deletion of Ccc1 Nt domain does not significantly alter GFP-Ccc1 protein stability. A functional full-length GFP-Ccc1 protein localized to particular regions of the vacuolar membrane, whereas GFP-NtΔCcc1 protein was evenly distributed throughout this endogenous membrane. Interestingly, expression of NtΔCCC1 increased the accumulation of endogenous iron in cells cultivated under iron-sufficient conditions, a strategy that could be used to extract iron from media that are not rich in iron.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Transporte Biológico , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética
20.
Biochim Biophys Acta Mol Cell Res ; 1867(10): 118797, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32663505

RESUMO

Iron is an essential micronutrient for virtually all eukaryotic organisms and plays a central role during microbial infections. Invasive fungal diseases are associated with strikingly high rates of mortality, but their impact on human health is usually underestimated. Upon a fungal infection, hosts restrict iron availability in order to limit the growth and virulence of the pathogen. Here, we use two model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, to delve into the response to iron deficiency of human fungal pathogens, such as Candida glabrata, Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. Fungi possess common and species-specific mechanisms to acquire iron and to control the response to iron limitation. Upon iron scarcity, fungi activate a wide range of elegant strategies to capture and import exogenous iron, mobilize iron from intracellular stores, and modulate their metabolism to economize and prioritize iron utilization. Hence, iron homeostasis genes represent remarkable virulence factors that can be used as targets for the development of novel antifungal treatments.


Assuntos
Adaptação Fisiológica , Fungos/fisiologia , Deficiências de Ferro , Transporte Biológico , Proteínas Fúngicas/metabolismo , Humanos , Sideróforos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa