Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Syst Biol ; 72(3): 590-605, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-36380474

RESUMO

Rates of phenotypic evolution vary markedly across the tree of life, from the accelerated evolution apparent in adaptive radiations to the remarkable evolutionary stasis exhibited by so-called "living fossils." Such rate variation has important consequences for large-scale evolutionary dynamics, generating vast disparities in phenotypic diversity across space, time, and taxa. Despite this, most methods for estimating trait evolution rates assume rates vary deterministically with respect to some variable of interest or change infrequently during a clade's history. These assumptions may cause underfitting of trait evolution models and mislead hypothesis testing. Here, we develop a new trait evolution model that allows rates to vary gradually and stochastically across a clade. Further, we extend this model to accommodate generally decreasing or increasing rates over time, allowing for flexible modeling of "early/late bursts" of trait evolution. We implement a Bayesian method, termed "evolving rates" (evorates for short), to efficiently fit this model to comparative data. Through simulation, we demonstrate that evorates can reliably infer both how and in which lineages trait evolution rates varied during a clade's history. We apply this method to body size evolution in cetaceans, recovering substantial support for an overall slowdown in body size evolution over time with recent bursts among some oceanic dolphins and relative stasis among beaked whales of the genus Mesoplodon. These results unify and expand on previous research, demonstrating the empirical utility of evorates. [cetacea; macroevolution; comparative methods; phenotypic diversity; disparity; early burst; late burst].


Assuntos
Evolução Biológica , Cetáceos , Animais , Filogenia , Teorema de Bayes , Simulação por Computador
2.
J Acoust Soc Am ; 154(1): 28-47, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37403992

RESUMO

An ocean-ice-acoustic coupled model is configured for the Beaufort Sea. The model uses outputs from a data assimilating global scale ice-ocean-atmosphere forecast to drive a bimodal roughness algorithm for generating a realistic ice canopy. The resulting range-dependent ice cover obeys observed roughness, keel number density, depth, and slope, and floe size statistics. The ice is inserted into a parabolic equation acoustic propagation model as a near-zero impedance fluid layer along with a model defined range-dependent sound speed profile. Year-long observations of transmissions at 35 Hz from the Coordinated Arctic Acoustic Thermometry Experiment and 925 Hz from the Arctic Mobile Observing System source were recorded over the winter of 2019-2020 on a free-drifting, eight-element vertical line array designed to vertically span the Beaufort duct. The ocean-ice-acoustic coupled model predicts receive levels that reasonably agree with the measurements over propagation ranges of 30-800 km. At 925 Hz, seasonal and sub-seasonal ocean and ice driven variations of propagation loss are captured in the data and reproduced in the model.

3.
JASA Express Lett ; 2(9): 090801, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36182346

RESUMO

Using a 2-year time series (2019-2020) of 1-min sound pressure level averages from seven sites, the extension of COVID-related quieting documented in coastal soundscapes to deep (approximately 200-900 m) waters off the southeastern United States was assessed. Sites ranged in distance to the continental shelf break and shipping lanes. Sound level decreases in 2020 were observed at sites closest to the shelf break and shipping lanes but were inconsistent with the timing of shipping changes related to a COVID-19 slowdown. These observations are consistent with increased numbers of vessel tracks in 2020 compared to 2019 at a majority of sites.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Navios , Sudeste dos Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa