Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Insect Sci ; 10: 77, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20673195

RESUMO

Bioassessment evaluates ecosystem health by using the responses of a community of organisms that integrate all aspects of the ecosystem. A variety of bioassessment methods have been applied to aquatic ecosystems; however, terrestrial methods are less advanced. The objective of this study was to examine baseline differences in ant communities at different seral stages from clear cut to mature pine plantation as a precursor to developing a broader terrestrial bioassessment protocol. Comparative sampling was conducted at nine sites having four seral stages: clearcut, 5 year recovery, 15 year recovery, and mature stands. Soil and vegetation data were also collected at each site. Ants were identified to genus. Analysis of the ant data indicated that ants respond strongly to habitat changes that accompany ecological succession in managed pine forests, and both individual genera and ant community structure can be used as indicators of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in mature seral stages was likely related to conditions on the forest floor favoring litter dwelling and cold climate specialists. While ants may be very useful in identifying environmental stress in managed pine forests, adjustments must be made for seral stage when comparing impacted and unimpacted forests.


Assuntos
Formigas/fisiologia , Ecossistema , Monitoramento Ambiental/métodos , Árvores , Animais , Biodiversidade , Densidade Demográfica
2.
Mar Genomics ; 37: 120-127, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28958500

RESUMO

Sex-bias in gene expression is a widespread mechanism for controlling the development of phenotypes that differ between males and females. Most studies on sex-bias in gene expression have focused on species that exhibit traditional sex-roles (male-male competition and female parental care). By contrast the Syngnathid fishes (sea horses, pipefish, and sea dragons) are a group of organisms where many species exhibit male brooding and sex-role reversal (female-female competition for mates and paternal parental care), and little is known about how patterns of sex-bias in gene expression vary in species with sex-role reversal. Here we utilize RNA-seq technology to investigate patterns of sex-bias in gene expression in the brain tissue of the Gulf Pipefish (Syngnathus scovelli) a species that exhibits sex-role reversal. Gene expression analysis identified 73 sex-biased genes, 26 genes upregulated in females and 47 genes upregulated in males. Gene ontology analysis found 52 terms enriched for the sex-biased genes in a wide range of pathways suggesting that multiple functions and processes differ between the sexes. We focused on two areas of interest: sex steroids/hormones and circadian rhythms, both of which exhibited sex-bias in gene expression, and are known to influence sexual development in other species. Lastly, the work presented herein contributes to a growing body of genome data available for the Syngnathids, increasing our knowledge on patterns of gene expression in these unusual fishes.


Assuntos
Expressão Gênica , Smegmamorpha/genética , Animais , Encéfalo/metabolismo , Feminino , Perfilação da Expressão Gênica , Masculino , Análise de Sequência de RNA , Fatores Sexuais , Smegmamorpha/metabolismo
3.
PLoS One ; 6(9): e25145, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21966438

RESUMO

Accurate establishment of baseline conditions is critical to successful management and habitat restoration. We demonstrate the ability to robustly estimate historical fish community composition and assess the current status of the urbanized Barton Creek watershed in central Texas, U.S.A. Fish species were surveyed in 2008 and the resulting data compared to three sources of fish occurrence information: (i) historical records from a museum specimen database and literature searches; (ii) a nearly identical survey conducted 15 years earlier; and (iii) a modeled historical community constructed with species distribution models (SDMs). This holistic approach, and especially the application of SDMs, allowed us to discover that the fish community in Barton Creek was more diverse than the historical data and survey methods alone indicated. Sixteen native species with high modeled probability of occurrence within the watershed were not found in the 2008 survey, seven of these were not found in either survey or in any of the historical collection records. Our approach allowed us to more rigorously establish the true baseline for the pre-development fish fauna and then to more accurately assess trends and develop hypotheses regarding factors driving current fish community composition to better inform management decisions and future restoration efforts. Smaller, urbanized freshwater systems, like Barton Creek, typically have a relatively poor historical biodiversity inventory coupled with long histories of alteration, and thus there is a propensity for land managers and researchers to apply inaccurate baseline standards. Our methods provide a way around that limitation by using SDMs derived from larger and richer biodiversity databases of a broader geographic scope. Broadly applied, we propose that this technique has potential to overcome limitations of popular bioassessment metrics (e.g., IBI) to become a versatile and robust management tool for determining status of freshwater biotic communities.


Assuntos
Peixes , Animais , Ecossistema , Monitoramento Ambiental , Água Doce , Texas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa