Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 77: 34-46, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27665712

RESUMO

The bcl-2 family of survival and death promoting proteins play a key role in regulating cell numbers during nervous system development. Bcl-xL, an anti-apoptotic bcl-2 family member is highly expressed in the developing nervous system. However; the early embryonic lethality of the bcl-x germline null mouse precluded an investigation into its role in nervous system development. To identify the role of bcl-x in spinal cord neurogenesis, we generated a central nervous system-specific bcl-x conditional knockout (BKO) mouse. Apoptotic cell death in the BKO embryo was initially detected at embryonic day 11 (E11) in the ventrolateral aspect of the spinal cord corresponding to the location of motor neurons. Apoptosis reached its peak at E13 having spread across the ventral and into the dorsal spinal cord. By E18, the wave of apoptosis had passed and only a few apoptotic cells were observed. The duration and direction of spread of apoptosis across the spinal cord is consistent with the spatial and temporal sequence of neuronal differentiation. Motor neurons, the first neurons to become post mitotic in the spinal cord, were also the first apoptotic cells. As neurogenesis spread across the spinal cord, later born neuronal populations such as Lim2+ interneurons were also affected. The onset of apoptosis occurred in cells that had exited the cell cycle within the previous 24h and initiated neural differentiation as demonstrated by BrdU birthdating and ßIII tubulin immunohistochemistry. This data demonstrates that spinal cord neurons become Bcl-xL dependent at an early post mitotic stage in developmental neurogenesis.


Assuntos
Neurogênese , Medula Espinal/metabolismo , Proteína bcl-X/metabolismo , Animais , Apoptose , Ciclo Celular , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Medula Espinal/citologia , Medula Espinal/embriologia , Proteína bcl-X/genética
2.
Learn Behav ; 42(3): 246-55, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24906889

RESUMO

It is difficult for rats to acquire daily time-place (TP) learning tasks. One theory suggests that rats do not use time of day as a stimulus signaling a specific response. In the present study, we tested rats' ability to use time of day as a discriminative stimulus. A fixed-interval procedure was used in which one lever provided reinforcement on a FI-5-s schedule in morning sessions, and the same lever provided reinforcement on a FI-30-s schedule in afternoon sessions. Because only one place was used in this paradigm, the rats could only use time of day to acquire the task. Mean responses during the first 5 s of the first trial in each session indicated that the rats did not discriminate between the two sessions. In Phase II, a different lever location was used for each of the two daily sessions, which meant that both spatial and temporal information could be used to acquire the task. The rats readily acquired the task in this phase, and probe trials indicated that the rats were using a combination of spatial and temporal information to discriminate between the two different trial types. When the spatial cue was removed in Phase III, rats no longer discriminated the two sessions, suggesting that time can only be used as a discriminative stimulus when each daily session is associated with a distinct spatial location.


Assuntos
Aprendizagem por Discriminação/fisiologia , Discriminação Psicológica/fisiologia , Aprendizagem/fisiologia , Memória Espacial/fisiologia , Animais , Masculino , Ratos , Ratos Long-Evans , Reforço Psicológico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa