Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(6): 1442-1442.e1, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32531249

RESUMO

Meiosis is the specialized cell division that generates haploid gametes and is therefore essential for sexual reproduction. This SnapShot encompasses key events taking place during prophase I of meiosis that are required for achieving proper chromosome segregation and highlights how these are both conserved and diverged throughout five different species. To view this SnapShot, open or download the PDF.


Assuntos
Meiose/fisiologia , Prófase Meiótica I/fisiologia , Animais , Arabidopsis/fisiologia , Caenorhabditis elegans/fisiologia , Segregação de Cromossomos/fisiologia , Drosophila melanogaster/fisiologia , Camundongos , Saccharomyces cerevisiae/fisiologia
2.
PLoS Genet ; 19(1): e1010627, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706157

RESUMO

Programmed DNA double-strand break (DSB) formation is essential for achieving accurate chromosome segregation during meiosis. DSB repair timing and template choice are tightly regulated. However, little is known about how DSB distribution and the choice of repair pathway are regulated along the length of chromosomes, which has direct effects on the recombination landscape and chromosome remodeling at late prophase I. Here, we use the spatiotemporal resolution of meiosis in the Caenorhabditis elegans germline along with genetic approaches to study distribution of DSB processing and its regulation. High-resolution imaging of computationally straightened chromosomes immunostained for the RAD-51 recombinase marking DSB repair sites reveals that the pattern of RAD-51 foci throughout pachytene resembles crossover distribution in wild type. Specifically, RAD-51 foci occur primarily along the gene-poor distal thirds of the chromosomes in both early and late pachytene, and on both the X and the autosomes. However, this biased off-center distribution can be abrogated by the formation of excess DSBs. Reduced condensin function, but not an increase in total physical axial length, results in a homogeneous distribution of RAD-51 foci, whereas regulation of H3K9 methylation is required for the enrichment of RAD-51 at off-center positions. Finally, the DSB recognition heterodimer cKU-70/80, but not the non-homologous end-joining canonical ligase LIG-4, contributes to the enriched off-center distribution of RAD-51 foci. Taken together, our data supports a model by which regulation of the chromatin landscape, DSB levels, and DSB detection by cKU-70/80 collaborate to promote DSB processing by homologous recombination at off-center regions of the chromosomes in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Quebras de DNA de Cadeia Dupla , Cromatina/genética , Cromatina/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Troca Genética , Reparo do DNA , Cromossomos/genética , Cromossomos/metabolismo , Meiose/genética
3.
PLoS Genet ; 19(2): e1010666, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36809245

RESUMO

Chromosome movements and licensing of synapsis must be tightly regulated during early meiosis to ensure accurate chromosome segregation and avoid aneuploidy, although how these steps are coordinated is not fully understood. Here we show that GRAS-1, the worm homolog of mammalian GRASP/Tamalin and CYTIP, coordinates early meiotic events with cytoskeletal forces outside the nucleus. GRAS-1 localizes close to the nuclear envelope (NE) in early prophase I and interacts with NE and cytoskeleton proteins. Delayed homologous chromosome pairing, synaptonemal complex (SC) assembly, and DNA double-strand break repair progression are partially rescued by the expression of human CYTIP in gras-1 mutants, supporting functional conservation. However, Tamalin, Cytip double knockout mice do not exhibit obvious fertility or meiotic defects, suggesting evolutionary differences between mammals. gras-1 mutants show accelerated chromosome movement during early prophase I, implicating GRAS-1 in regulating chromosome dynamics. GRAS-1-mediated regulation of chromosome movement is DHC-1-dependent, placing it acting within the LINC-controlled pathway, and depends on GRAS-1 phosphorylation at a C-terminal S/T cluster. We propose that GRAS-1 coordinates the early steps of homology search and licensing of SC assembly by regulating the pace of chromosome movement in early prophase I.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Camundongos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Pareamento Cromossômico , Segregação de Cromossomos , Mamíferos/genética , Meiose , Prófase Meiótica I , Complexo Sinaptonêmico/metabolismo
4.
Genes Dev ; 31(3): 306-317, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28223312

RESUMO

During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana accessions, we identified two major recombination quantitative trait loci (rQTLs) that explain 56.9% of crossover variation in Col×Ler F2 populations. We mapped rQTL1 to semidominant polymorphisms in HEI10, which encodes a conserved ubiquitin E3 ligase that regulates crossovers. Null hei10 mutants are haploinsufficient, and, using genome-wide mapping and immunocytology, we show that transformation of additional HEI10 copies is sufficient to more than double euchromatic crossovers. However, heterochromatic centromeres remained recombination-suppressed. The strongest HEI10-mediated crossover increases occur in subtelomeric euchromatin, which is reminiscent of sex differences in Arabidopsis recombination. Our work reveals that HEI10 naturally limits Arabidopsis crossovers and has the potential to influence the response to selection.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Troca Genética , Dosagem de Genes , Meiose/genética , Sequência de Aminoácidos , Locos de Características Quantitativas , Recombinação Genética , Homologia de Sequência de Aminoácidos
5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33883277

RESUMO

The position of recombination events established along chromosomes in early prophase I and the chromosome remodeling that takes place in late prophase I are intrinsically linked steps of meiosis that need to be tightly regulated to ensure accurate chromosome segregation and haploid gamete formation. Here, we show that RAD-51 foci, which form at the sites of programmed meiotic DNA double-strand breaks (DSBs), exhibit a biased distribution toward off-centered positions along the chromosomes in wild-type Caenorhabditis elegans, and we identify two meiotic roles for chromatin-associated protein HIM-17 that ensure normal chromosome remodeling in late prophase I. During early prophase I, HIM-17 regulates the distribution of DSB-dependent RAD-51 foci and crossovers on chromosomes, which is critical for the formation of distinct chromosome subdomains (short and long arms of the bivalents) later during chromosome remodeling. During late prophase I, HIM-17 promotes the normal expression and localization of protein phosphatases GSP-1/2 to the surface of the bivalent chromosomes and may promote GSP-1 phosphorylation, thereby antagonizing Aurora B kinase AIR-2 loading on the long arms and preventing premature loss of sister chromatid cohesion. We propose that HIM-17 plays distinct roles at different stages during meiotic progression that converge to promote normal chromosome remodeling and accurate chromosome segregation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Meiose/fisiologia , Recombinação Genética/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Segregação de Cromossomos/genética , Cromossomos/metabolismo , Troca Genética/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Rad51 Recombinase/metabolismo , Recombinação Genética/genética
6.
PLoS Genet ; 16(1): e1008529, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31917788

RESUMO

Exposure to diethylhexyl phthalate (DEHP), the most abundant plasticizer used in the production of polyvinyl-containing plastics, has been associated to adverse reproductive health outcomes in both males and females. While the effects of DEHP on reproductive health have been widely investigated, the molecular mechanisms by which exposure to environmentally-relevant levels of DEHP and its metabolites impact the female germline in the context of a multicellular organism have remained elusive. Using the Caenorhabditis elegans germline as a model for studying reprotoxicity, we show that exposure to environmentally-relevant levels of DEHP and its metabolites results in increased meiotic double-strand breaks (DSBs), altered DSB repair progression, activation of p53/CEP-1-dependent germ cell apoptosis, defects in chromosome remodeling at late prophase I, aberrant chromosome morphology in diakinesis oocytes, increased chromosome non-disjunction and defects during early embryogenesis. Exposure to DEHP results in a subset of nuclei held in a DSB permissive state in mid to late pachytene that exhibit defects in crossover (CO) designation/formation. In addition, these nuclei show reduced Polo-like kinase-1/2 (PLK-1/2)-dependent phosphorylation of SYP-4, a synaptonemal complex (SC) protein. Moreover, DEHP exposure leads to germline-specific change in the expression of prmt-5, which encodes for an arginine methyltransferase, and both increased SC length and altered CO designation levels on the X chromosome. Taken together, our data suggest a model by which impairment of a PLK-1/2-dependent negative feedback loop set in place to shut down meiotic DSBs, together with alterations in chromosome structure, contribute to the formation of an excess number of DSBs and altered CO designation levels, leading to genomic instability.


Assuntos
Troca Genética , Quebras de DNA de Cadeia Dupla , Dietilexilftalato/toxicidade , Oogênese , Oogônios/efeitos dos fármacos , Plastificantes/toxicidade , Animais , Apoptose , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Instabilidade Genômica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oogônios/citologia , Oogônios/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
PLoS Genet ; 14(11): e1007701, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30383767

RESUMO

Breast cancer susceptibility gene 1 (BRCA1) and binding partner BRCA1-associated RING domain protein 1 (BARD1) form an essential E3 ubiquitin ligase important for DNA damage repair and homologous recombination. The Caenorhabditis elegans orthologs, BRC-1 and BRD-1, also function in DNA damage repair, homologous recombination, as well as in meiosis. Using functional GFP fusions we show that in mitotically-dividing germ cells BRC-1 and BRD-1 are nucleoplasmic with enrichment at foci that partially overlap with the recombinase RAD-51. Co-localization with RAD-51 is enhanced under replication stress. As cells enter meiosis, BRC-1-BRD-1 remains nucleoplasmic and in foci, and beginning in mid-pachytene the complex co-localizes with the synaptonemal complex. Following establishment of the single asymmetrically positioned crossover on each chromosome pair, BRC-1-BRD-1 concentrates to the short arm of the bivalent. Localization dependencies reveal that BRC-1 and BRD-1 are interdependent and the complex fails to properly localize in both meiotic recombination and chromosome synapsis mutants. Consistent with a role for BRC-1-BRD-1 in meiotic recombination in the context of the synaptonemal complex, inactivation of BRC-1 or BRD-1 enhances the embryonic lethality of mutants defective in chromosome synapsis. Our data suggest that under meiotic dysfunction, BRC-1-BRD-1 stabilizes the RAD-51 filament and alters the recombination landscape; these two functions can be genetically separated from BRC-1-BRD-1's role in the DNA damage response. Together, we propose that BRC-1-BRD-1 serves a checkpoint function at the synaptonemal complex where it monitors and modulates meiotic recombination.


Assuntos
Proteína BRCA1/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Meiose/genética , Recombinação Genética , Complexo Sinaptonêmico/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Alelos , Animais , Proteína BRCA1/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Replicação do DNA , Embrião não Mamífero , Genes Reporter , Células Germinativas , Transporte Proteico , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética
8.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884922

RESUMO

DNA entanglements and supercoiling arise frequently during normal DNA metabolism. DNA topoisomerases are highly conserved enzymes that resolve the topological problems that these structures create. Topoisomerase II (TOPII) releases topological stress in DNA by removing DNA supercoils through breaking the two DNA strands, passing a DNA duplex through the break and religating the broken strands. TOPII performs key DNA metabolic roles essential for DNA replication, chromosome condensation, heterochromatin metabolism, telomere disentanglement, centromere decatenation, transmission of crossover (CO) interference, interlock resolution and chromosome segregation in several model organisms. In this study, we reveal the endogenous role of Arabidopsis thaliana TOPII in normal root growth and cell cycle, and mitotic DNA repair via homologous recombination. Additionally, we show that the protein is required for meiotic DSB repair progression, but not for CO formation. We propose that TOPII might promote mitotic HR DNA repair by relieving stress needed for HR strand invasion and D-loop formation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Reparo do DNA/fisiologia , DNA Topoisomerases Tipo II/genética , Recombinação Homóloga , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Segregação de Cromossomos , Cromossomos de Plantas , Quebras de DNA de Cadeia Dupla , Replicação do DNA , DNA Topoisomerases Tipo II/metabolismo , Raios gama , Meiose , Mitomicina/farmacologia , Mutação
9.
Proc Natl Acad Sci U S A ; 112(15): 4761-6, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825731

RESUMO

Neural correlations during a cognitive task are central to study brain information processing and computation. However, they have been poorly analyzed due to the difficulty of recording simultaneous single neurons during task performance. In the present work, we quantified neural directional correlations using spike trains that were simultaneously recorded in sensory, premotor, and motor cortical areas of two monkeys during a somatosensory discrimination task. Upon modeling spike trains as binary time series, we used a nonparametric Bayesian method to estimate pairwise directional correlations between many pairs of neurons throughout different stages of the task, namely, perception, working memory, decision making, and motor report. We find that solving the task involves feedforward and feedback correlation paths linking sensory and motor areas during certain task intervals. Specifically, information is communicated by task-driven neural correlations that are significantly delayed across secondary somatosensory cortex, premotor, and motor areas when decision making takes place. Crucially, when sensory comparison is no longer requested for task performance, a major proportion of directional correlations consistently vanish across all cortical areas.


Assuntos
Córtex Cerebral/fisiologia , Cognição/fisiologia , Macaca mulatta/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Somatossensorial/fisiologia , Algoritmos , Animais , Teorema de Bayes , Mapeamento Encefálico , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/citologia , Tomada de Decisões/fisiologia , Discriminação Psicológica/fisiologia , Macaca mulatta/anatomia & histologia , Macaca mulatta/psicologia , Masculino , Modelos Neurológicos , Método de Monte Carlo , Rede Nervosa/anatomia & histologia , Rede Nervosa/citologia , Neurônios/fisiologia , Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/citologia
10.
PLoS Comput Biol ; 11(11): e1004502, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26556807

RESUMO

Estimating the difficulty of a decision is a fundamental process to elaborate complex and adaptive behaviour. In this paper, we show that the movement time of behaving monkeys performing a decision-making task is correlated with decision difficulty and that the activity of a population of neurons in ventral Premotor cortex correlates with the movement time. Moreover, we found another population of neurons that encodes the discriminability of the stimulus, thereby supplying another source of information about the difficulty of the decision. The activity of neurons encoding the difficulty can be produced by very different computations. Therefore, we show that decision difficulty can be encoded through three different mechanisms: 1. Switch time coding, 2. rate coding and 3. binary coding. This rich representation reflects the basis of different functional aspects of difficulty in the making of a decision and the possible role of difficulty estimation in complex decision scenarios.


Assuntos
Biologia Computacional/métodos , Tomada de Decisões/fisiologia , Modelos Neurológicos , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Algoritmos , Animais , Macaca mulatta , Masculino , Fatores de Tempo
11.
Proc Natl Acad Sci U S A ; 108(28): 11626-31, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709222

RESUMO

We consider the mechanisms that enable decisions to be postponed for a period after the evidence has been provided. Using an information theoretic approach, we show that information about the forthcoming action becomes available from the activity of neurons in the medial premotor cortex in a sequential decision-making task after the second stimulus is applied, providing the information for a decision about whether the first or second stimulus is higher in vibrotactile frequency. The information then decays in a 3-s delay period in which the neuronal activity declines before the behavioral response can be made. The information then increases again when the behavioral response is required. We model this neuronal activity using an attractor decision-making network in which information reflecting the decision is maintained at a low level during the delay period, and is then selectively restored by a nonspecific input when the response is required. One mechanism for the short-term memory is synaptic facilitation, which can implement a mechanism for postponed decisions that can be correct even when there is little neuronal firing during the delay period before the postponed decision. Another mechanism is graded firing rates by different neurons in the delay period, with restoration by the nonspecific input of the low-rate activity from the higher-rate neurons still firing in the delay period. These mechanisms can account for the decision making and for the memory of the decision before a response can be made, which are evident in the activity of neurons in the medial premotor cortex.


Assuntos
Tomada de Decisões/fisiologia , Modelos Neurológicos , Potenciais de Ação/fisiologia , Animais , Teoria da Decisão , Aprendizagem por Discriminação/fisiologia , Teoria da Informação , Macaca mulatta , Rememoração Mental/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Fatores de Tempo
12.
iScience ; 27(1): 108699, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38299026

RESUMO

N,N-diethyl-meta-toluamide (DEET) is a commonly used synthetic insect repellent. Although the neurological effects of DEET have been widely investigated, its effects on the germline are less understood. Here, we show that exposure of the nematode Caenorhabditis elegans, which is highly predictive of mammalian reprotoxicity, resulting in internal DEET levels within the range detected in human biological samples, causes activation of p53/CEP-1-dependent germ cell apoptosis, altered meiotic recombination, chromosome abnormalities, and missegregation. RNA-sequencing analysis links DEET-induced alterations in the expression of genes related to redox processes and chromatin structure to reduced mitochondrial function, impaired DNA double-strand break repair progression, and defects during early embryogenesis. We propose that Caenorhabditis elegans exposure to DEET interferes with gene expression, leading to increased oxidative stress and altered chromatin structure, resulting in germline effects that pose a risk to reproductive health.

14.
Front Cell Dev Biol ; 11: 1285695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111849

RESUMO

Nuclear Pore Complexes (NPCs) are embedded in the nuclear envelope (NE), regulating macromolecule transport and physically interacting with chromatin. The NE undergoes dramatic breakdown and reformation during plant cell division. In addition, this structure has a specific meiotic function, anchoring and positioning telomeres to facilitate the pairing of homologous chromosomes. To elucidate a possible function of the structural components of the NPCs in meiosis, we have characterized several Arabidopsis lines with mutations in genes encoding nucleoporins belonging to the outer ring complex. Plants defective for either SUPPRESSOR OF AUXIN RESISTANCE1 (SAR1, also called NUP160) or SAR3 (NUP96) present condensation abnormalities and SPO11-dependent chromosome fragmentation in a fraction of meiocytes, which is increased in the double mutant sar1 sar3. We also observed these meiotic defects in mutants deficient in the outer ring complex protein HOS1, but not in mutants affected in other components of this complex. Furthermore, our findings may suggest defects in the structure of NPCs in sar1 and a potential link between the meiotic role of this nucleoporin and a component of the RUBylation pathway. These results provide the first insights in plants into the role of nucleoporins in meiotic chromosome behavior.

15.
Genes (Basel) ; 13(3)2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35328099

RESUMO

To generate gametes, sexually reproducing organisms need to achieve a reduction in ploidy, via meiosis. Several mechanisms are set in place to ensure proper reductional chromosome segregation at the first meiotic division (MI), including chromosome remodeling during late prophase I. Chromosome remodeling after crossover formation involves changes in chromosome condensation and restructuring, resulting in a compact bivalent, with sister kinetochores oriented to opposite poles, whose structure is crucial for localized loss of cohesion and accurate chromosome segregation. Here, we review the general processes involved in late prophase I chromosome remodeling, their regulation, and the strategies devised by different organisms to produce bivalents with configurations that promote accurate segregation.


Assuntos
Segregação de Cromossomos , Prófase Meiótica I , Segregação de Cromossomos/genética , Cinetocoros , Meiose/genética , Prófase Meiótica I/genética
16.
Sci Rep ; 12(1): 12543, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869182

RESUMO

Since March of 2020, billions of people worldwide have been asked to limit their social contacts in an effort to contain the spread of the SARS-CoV-2 virus. However, little research has been carried out to date on the impact of such social distancing measures on the social isolation levels of the population. In this paper, we study the impact of the pandemic on the social isolation of the Spanish population, by means of 32,359 answers to a citizen survey collected over a period of 7 months. We uncover (1) a significant increase in the prevalence of social isolation in the population, reaching almost 26%; (2) gender and age differences, with the largest prevalence of isolation among middle-aged individuals; (3) a strong relationship between economic impact and social isolation; and (4) differences in social isolation, depending on the number of COVID-19 protection measures and on the perception of coronavirus infection risk by our participants. Our research sheds quantitative light on the sociological impact of the pandemic, and enables us to identify key factors in the interplay between the deployment of non-pharmaceutical interventions to contain the spread of an infectious disease and a population's levels of social isolation.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Pessoa de Meia-Idade , Pandemias/prevenção & controle , SARS-CoV-2 , Isolamento Social , Espanha/epidemiologia
17.
Curr Biol ; 32(21): 4719-4726.e4, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36137547

RESUMO

DNA double-strand breaks (DSBs) are deleterious lesions, which must be repaired precisely to maintain genomic stability. During meiosis, programmed DSBs are repaired via homologous recombination (HR) while repair using the nonhomologous end joining (NHEJ) pathway is inhibited, thereby ensuring crossover formation and accurate chromosome segregation.1,2 How DSB repair pathway choice is implemented during meiosis is unknown. In C. elegans, meiotic DSB repair takes place in the context of the fully formed, highly dynamic zipper-like structure present between homologous chromosomes called the synaptonemal complex (SC).3,4,5,6,7,8,9 The SC consists of a pair of lateral elements bridged by a central region composed of the SYP proteins in C. elegans. How the structural components of the SC are regulated to maintain the architectural integrity of the assembled SC around DSB repair sites remained unclear. Here, we show that SYP-4, a central region component of the SC, is phosphorylated at Serine 447 in a manner dependent on DSBs and the ATM/ATR DNA damage response kinases. We show that this SYP-4 phosphorylation is critical for preserving the SC structure following exogenous (γ-IR-induced) DSB formation and for promoting normal DSB repair progression and crossover patterning following SPO-11-dependent and exogenous DSBs. We propose a model in which ATM/ATR-dependent phosphorylation of SYP-4 at the S447 site plays important roles both in maintaining the architectural integrity of the SC following DSB formation and in warding off repair via the NHEJ repair pathway, thereby preventing aneuploidy.


Assuntos
Proteínas de Caenorhabditis elegans , Quebras de DNA de Cadeia Dupla , Animais , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Reparo do DNA , Meiose , DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
18.
Sci Rep ; 11(1): 18626, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34545107

RESUMO

Population confinements have been one of the most widely adopted non-pharmaceutical interventions (NPIs) implemented by governments across the globe to help contain the spread of the SARS-CoV-2 virus. While confinement measures have been proven to be effective to reduce the number of infections, they entail significant economic and social costs. Thus, different policy makers and social groups have exhibited varying levels of acceptance of this type of measures. In this context, understanding the factors that determine the willingness of individuals to be confined during a pandemic is of paramount importance, particularly, to policy and decision-makers. In this paper, we study the factors that influence the unwillingness to be confined during the COVID-19 pandemic by the means of a large-scale, online population survey deployed in Spain. We perform two types of analyses (logistic regression and automatic pattern discovery) and consider socio-demographic, economic and psychological factors, together with the 14-day cumulative incidence per 100,000 inhabitants. Our analysis of 109,515 answers to the survey covers data spanning over a 5-month time period to shed light on the impact of the passage of time. We find evidence of pandemic fatigue as the percentage of those who report an unwillingness to be in confinement increases over time; we identify significant gender differences, with women being generally less likely than men to be able to sustain long-term confinement of at least 6 months; we uncover that the psychological impact was the most important factor to determine the willingness to be in confinement at the beginning of the pandemic, to be replaced by the economic impact as the most important variable towards the end of our period of study. Our results highlight the need to design gender and age specific public policies, to implement psychological and economic support programs and to address the evident pandemic fatigue as the success of potential future confinements will depend on the population's willingness to comply with them.


Assuntos
COVID-19/epidemiologia , Pandemias , Comportamento , COVID-19/economia , COVID-19/psicologia , Feminino , Humanos , Modelos Logísticos , Masculino , Razão de Chances , Reconhecimento Automatizado de Padrão , Espanha/epidemiologia , Estatística como Assunto , Inquéritos e Questionários , Local de Trabalho
19.
Sci Rep ; 10(1): 8860, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483285

RESUMO

Rubylation is a conserved regulatory pathway similar to ubiquitination and essential in the response to the plant hormone auxin. In Arabidopsis thaliana, AUXIN RESISTANT1 (AXR1) functions as the E1-ligase in the rubylation pathway. The gene AXR1-LIKE (AXL), generated by a relatively recent duplication event, can partially replace AXR1 in this pathway. We have analysed mutants deficient for both proteins and complementation lines (with the AXR1 promoter and either AXR1 or AXL coding sequences) to further study the extent of functional redundancy between both genes regarding two processes: meiosis and DNA repair. Here we report that whereas AXR1 is essential to ensure the obligatory chiasma, AXL seems to be dispensable during meiosis, although its absence slightly alters chiasma distribution. In addition, expression of key DNA repair and meiotic genes is altered when either AXR1 or AXL are absent. Furthermore, our results support a significant role for both genes in DNA repair that was not previously described. These findings highlight that AXR1 and AXL show a functional divergence in relation to their involvement in homologous recombination, exemplifying a duplicate retention model in which one copy tends to have more sub-functions than its paralog.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reparo do DNA , Meiose , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dano ao DNA/efeitos da radiação , Raios gama , Regulação da Expressão Gênica de Plantas , Recombinação Homóloga , Ácidos Indolacéticos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética , Ubiquitinação , Receptor Tirosina Quinase Axl
20.
Front Neurosci ; 13: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30894796

RESUMO

Subjective image quality databases are a major source of raw data on how the visual system works in naturalistic environments. These databases describe the sensitivity of many observers to a wide range of distortions of different nature and intensity seen on top of a variety of natural images. Data of this kind seems to open a number of possibilities for the vision scientist to check the models in realistic scenarios. However, while these natural databases are great benchmarks for models developed in some other way (e.g., by using the well-controlled artificial stimuli of traditional psychophysics), they should be carefully used when trying to fit vision models. Given the high dimensionality of the image space, it is very likely that some basic phenomena are under-represented in the database. Therefore, a model fitted on these large-scale natural databases will not reproduce these under-represented basic phenomena that could otherwise be easily illustrated with well selected artificial stimuli. In this work we study a specific example of the above statement. A standard cortical model using wavelets and divisive normalization tuned to reproduce subjective opinion on a large image quality dataset fails to reproduce basic cross-masking. Here we outline a solution for this problem by using artificial stimuli and by proposing a modification that makes the model easier to tune. Then, we show that the modified model is still competitive in the large-scale database. Our simulations with these artificial stimuli show that when using steerable wavelets, the conventional unit norm Gaussian kernels in divisive normalization should be multiplied by high-pass filters to reproduce basic trends in masking. Basic visual phenomena may be misrepresented in large natural image datasets but this can be solved with model-interpretable stimuli. This is an additional argument in praise of artifice in line with Rust and Movshon (2005).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa