Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 4): 741-750, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917021

RESUMO

Transition-metal nitrogen-doped carbons (TM-N-C) are emerging as a highly promising catalyst class for several important electrocatalytic processes, including the electrocatalytic CO2 reduction reaction (CO2RR). The unique local environment around the singly dispersed metal site in TM-N-C catalysts is likely to be responsible for their catalytic properties, which differ significantly from those of bulk or nanostructured catalysts. However, the identification of the actual working structure of the main active units in TM-N-C remains a challenging task due to the fluctional, dynamic nature of these catalysts, and scarcity of experimental techniques that could probe the structure of these materials under realistic working conditions. This issue is addressed in this work and the local atomistic and electronic structure of the metal site in a Co-N-C catalyst for CO2RR is investigated by employing time-resolved operando X-ray absorption spectroscopy (XAS) combined with advanced data analysis techniques. This multi-step approach, based on principal component analysis, spectral decomposition and supervised machine learning methods, allows the contributions of several co-existing species in the working Co-N-C catalysts to be decoupled, and their XAS spectra deciphered, paving the way for understanding the CO2RR mechanisms in the Co-N-C catalysts, and further optimization of this class of electrocatalytic systems.

2.
Cancers (Basel) ; 16(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39061218

RESUMO

SerpinB3, a member of the serine-protease inhibitor family, has emerged as a crucial player in various physiological and pathological processes. Initially identified as an oncogenic factor in squamous cell carcinomas, SerpinB3's intricate involvement extends from fibrosis progression and cancer to cell protection in acute oxidative stress conditions. This review explores the multifaceted roles of SerpinB3, focusing on its implications in fibrosis, metabolic syndrome, carcinogenesis and immune system impairment. Furthermore, its involvement in tissue protection from oxidative stress and wound healing underscores its potential as diagnostic and therapeutic tool. Recent studies have described the therapeutic potential of targeting SerpinB3 through its upstream regulators, offering novel strategies for cancer treatment development. Overall, this review underscores the importance of further research to fully elucidate the mechanisms of action of SerpinB3 and to exploit its therapeutic potential across various medical conditions.

3.
Intern Emerg Med ; 19(3): 641-647, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227274

RESUMO

Chronic liver disease (CLD) is a leading global cause of mortality, morbidity, and healthcare resource utilization. However, the burden of CLD is underestimated because the course of the disease is often asymptomatic until clinical decompensation and the development of life-threatening complications. In this study, we assessed the use of available blood tests from electronic medical records for identifying individuals with undiagnosed CLD in the general population. We analyzed a total of 202,529 blood tests obtained from 99,848 adults recorded in the Electronic Health Records of the Padova Teaching Hospital. Transaminases levels > 1.5 times the normal value indicated occult CLD, while platelet counts < 120,000/µL identified occult cirrhosis. We characterized patients using Italian Medical Exemptions (IME), excluding oncologic cases. Overt and occult cirrhosis prevalence was 1% and 4.18%, respectively, while overt and occult CLD affected 2.85% and 4.61% of the population. The epidemiology of patients with overt and occult cirrhosis was similar but significantly different from that of the controls. Among subjects aged 60-70 years, working disability was twofold higher in those with occult cirrhosis compared to those with overt cirrhosis. Occult CLD and cirrhosis had higher prevalence rates than diagnosed cases in the general population. Electronic medical record data may serve as a valuable tool for CLD identification, potentially reducing cirrhosis development and clinical decompensation. This, in turn, may lead to a decrease in the economic impact on the healthcare system.


Assuntos
Registros Eletrônicos de Saúde , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Registros Eletrônicos de Saúde/estatística & dados numéricos , Itália/epidemiologia , Adulto , Hepatopatias/epidemiologia , Hepatopatias/diagnóstico , Doença Crônica , Prevalência , Bases de Dados Factuais
4.
Mol Metab ; 81: 101889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307387

RESUMO

OBJECTIVE: The serine protease inhibitor SerpinB3 has been described as critical mediator of liver fibrosis and it has been recently proposed as an additional hepatokine involved in NASH development and insulin resistance. Protease Activated Receptor 2 has been identified as a novel regulator of hepatic metabolism. A targeted therapeutic strategy for NASH has been investigated, using 1-Piperidine Propionic Acid (1-PPA), since this compound has been recently proposed as both Protease Activated Receptor 2 and SerpinB3 inhibitor. METHODS: The effect of SerpinB3 on inflammation and fibrosis genes was assessed in human macrophage and stellate cell lines. Transgenic mice, either overexpressing SerpinB3 or carrying Serpinb3 deletion and their relative wild type strains, were used in experimental NASH models. Subgroups of SerpinB3 transgenic mice and their controls were also injected with 1-PPA to assess the efficacy of this compound in NASH inhibition. RESULTS: 1-PPA did not present significant cell and organ toxicity and was able to inhibit SerpinB3 and PAR2 in a dose-dependent manner. This effect was associated to a parallel reduction of the synthesis of the molecules induced by endogenous SerpinB3 or by its paracrine effects both in vitro and in vivo, leading to inhibition of lipid accumulation, inflammation and fibrosis in experimental NASH. At mechanistic level, the antiprotease activity of SerpinB3 was found essential for PAR2 activation, determining upregulation of the CCAAT Enhancer Binding Protein beta (C/EBP-ß), another pivotal regulator of metabolism, inflammation and fibrosis, which in turn determined SerpinB3 synthesis. CONCLUSIONS: 1-PPA treatment was able to inhibit the PAR2 - C/EBP-ß - SerpinB3 axis and to protect from NASH development and progression, supporting the potential use of a similar approach for a targeted therapy of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor PAR-2 , Proteína beta Intensificadora de Ligação a CCAAT , Cirrose Hepática/tratamento farmacológico , Camundongos Transgênicos , Inflamação
5.
Cancers (Basel) ; 16(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38201652

RESUMO

Cholangiocarcinoma (CCA), the second most common primary liver tumor, is associated with a dismal outcome, and useful prognostic markers are not currently available in clinical practice. SerpinB3, a serine protease inhibitor, was recently found to play a relevant role in malignant transformation in different cancers. The aim of the present study was to determine the expression of SerpinB3/4 in tissue and serum samples of patients with CCA in relation to clinical outcomes. SerpinB3/4 was assessed in the tissue microarrays (TMAs) of 123 surgically resected CCAs. ELISA assays were carried out in 188 patients with CCA to detect the free and IgM-linked forms of SerpinB3/4. Overall survival was analyzed in relation to SerpinB3/4 expression, and Cox models were used to identify the variables associated with survival. High levels of SerpinB3/4 (TMA score 2+/3+) were detected in 15 tumors (12.2%), characterized by a more advanced TNM stage (III/IV: 64.3% vs. 31.3%; p = 0.031) and lower overall patient survival, independently of CCA subclass (intrahepatic CCA: median 1.1 (0.8-Not Estimable, NE) vs. 2.4 (1.8-3.4) years; p = 0.0007; extrahepatic CCA: median 0.8 (0.2-NE) vs. 2.2 (1.5-5.4) years; p = 0.011). Vascular invasion (p = 0.027) and SerpinB3/4 scores (p = 0.0016) were independently associated with mortality in multivariate analysis. Patients who had detectable free or IgM-linked SerpinB3/4 in their serum showed poorer survival (1 vs. 2.4 years, p = 0.015, for free SerpinB3/4, and 1 vs. 2.6 years, p = 0.0026, for SerpinB3/4-IgM). In conclusion, high levels of SerpinB3/4 in tissue and serum in CCA are associated with poor outcomes after surgery, regardless of tumor subclass.

6.
Nat Commun ; 15(1): 6111, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030207

RESUMO

Copper and nitrogen co-doped carbon catalysts exhibit a remarkable behavior during the electrocatalytic CO2 reduction (CO2RR), namely, the formation of metal nanoparticles from Cu single atoms, and their subsequent reversible redispersion. Here we show that the switchable nature of these species holds the key for the on-demand control over the distribution of CO2RR products, a lack of which has thus far hindered the wide-spread practical adoption of CO2RR. By intermitting pulses of a working cathodic potential with pulses of anodic potential, we were able to achieve a controlled fragmentation of the Cu particles and partial regeneration of single atom sites. By tuning the pulse durations, and by tracking the catalyst's evolution using operando quick X-ray absorption spectroscopy, the speciation of the catalyst can be steered toward single atom sites, ultrasmall metal clusters or large metal nanoparticles, each exhibiting unique CO2RR functionalities.

7.
Energy Environ Sci ; 17(5): 2046-2058, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38449571

RESUMO

The production of green hydrogen through alkaline water electrolysis is the key technology for the future carbon-neutral industry. Nanocrystalline Co3O4 catalysts are highly promising electrocatalysts for the oxygen evolution reaction and their activity strongly benefits from Fe surface decoration. However, limited knowledge of decisive catalyst motifs at the atomic level during oxygen evolution prevents their knowledge-driven optimization. Here, we employ a variety of operando spectroscopic methods to unveil how Fe decoration increases the catalytic activity of Co3O4 nanocatalysts as well as steer the (near-surface) active state formation. Our study shows a link of the termination-dependent Fe decoration to the activity enhancement and a significantly stronger Co3O4 near-surface (structural) adaptation under the reaction conditions. The near-surface Fe- and Co-O species accumulate an oxidative charge and undergo a reversible bond contraction during the catalytic process. Moreover, our work demonstrates the importance of low coordination surface sites on the Co3O4 host to ensure an efficient Fe-induced activity enhancement, providing another puzzle piece to facilitate optimized catalyst design.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa