RESUMO
This study analyzed whole blood samples (n = 56) retrieved from 30 patients at 1 to 21 (median 9) mo after verified COVID-19 to determine the polarity and duration of antigen-specific T cell reactivity against severe acute respiratory syndrome coronavirus 2-derived antigens. Multimeric peptides spanning the entire nucleocapsid protein triggered strikingly synchronous formation of interleukin (IL)-4, IL-12, IL-13, and IL-17 ex vivo until â¼70 d after confirmed infection, whereafter this reactivity was no longer inducible. In contrast, levels of nucleocapsid-induced IL-2 and interferon-γ remained stable and highly correlated at 3 to 21 mo after infection. Similar cytokine dynamics were observed in unvaccinated, convalescent patients using whole-blood samples stimulated with peptides spanning the N-terminal portion of the spike 1 protein. These results unravel two phases of T cell reactivity following natural COVID-19: an early, synchronous response indicating transient presence of multipolar, antigen-specific T helper (TH) cells followed by an equally synchronous and durable TH1-like reactivity reflecting long-lasting T cell memory.
Assuntos
COVID-19 , Citocinas , SARS-CoV-2 , Linfócitos T Auxiliares-Indutores , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , COVID-19/sangue , COVID-19/imunologia , Convalescença , Citocinas/sangue , Humanos , Interferon gama/sangue , Proteínas do Nucleocapsídeo/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T Auxiliares-Indutores/imunologiaRESUMO
Adenosine deaminases acting on RNA (ADAR) are RNA-editing enzymes that may restrict viral infection. We have utilized deep sequencing to determine adenosine to guanine (AâG) mutations, signifying ADAR activity, in clinical samples retrieved from 93 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients in the early phase of the COVID-19 pandemic. AâG mutations were detected in 0.035% (median) of RNA residues and were predominantly nonsynonymous. These mutations were rarely detected in the major viral population but were abundant in minor viral populations in which AâG was more prevalent than any other mutation (P < 0.001). The AâG substitutions accumulated in the spike protein gene at positions corresponding to amino acids 505 to 510 in the receptor binding motif and at amino acids 650 to 655. The frequency of AâG mutations in minor viral populations was significantly associated with low viral load (P < 0.001). We additionally analyzed AâG mutations in 288,247 SARS-CoV-2 major (consensus) sequences representing the dominant viral population. The AâG mutations observed in minor viral populations in the initial patient cohort were increasingly detected in European consensus sequences between March and June 2020 (P < 0.001) followed by a decline of these mutations in autumn and early winter (P < 0.001). We propose that ADAR-induced deamination of RNA is a significant source of mutated SARS-CoV-2 and hypothesize that the degree of RNA deamination may determine or reflect viral fitness and infectivity.
Assuntos
Adenosina Desaminase/genética , COVID-19/epidemiologia , Mutação Puntual , Edição de RNA , RNA Viral/genética , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , COVID-19/genética , COVID-19/transmissão , COVID-19/virologia , Desaminação , Feminino , Aptidão Genética , Genoma Viral , Guanina/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Masculino , Pessoa de Meia-Idade , RNA Viral/metabolismo , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/patogenicidade , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus/metabolismo , Suécia/epidemiologia , Carga Viral , VirulênciaRESUMO
Hydroxyurea (HU) is frequently used in the early phase of chronic myeloid leukemia (CML) to achieve cytoreduction prior to tyrosine kinase inhibitor (TKI) therapy. However, its impact on CML stem and progenitor cells (SPC) remains largely unknown. This study utilized targeted proteo-transcriptomic expression data on 596 genes and 51 surface proteins in 60,000 CD14-CD34+ cells from chronic phase CML patients to determine effects of shortterm HU treatment (4-19 days) on CML SPC. Peripheral blood and bone marrow samples were obtained from 17 CML patients eligible for short-term HU treatment (three patients before and after HU; seven patients before HU; and seven patients after HU) and subjected to single-cell CITE-seq and/or flow cytometry analysis. The analysis revealed enhanced frequencies of hemoglobin-expressing (HBA1, HBA2, HBB) erythroid progenitor cells in blood and bone marrow following HU treatment. In addition, there was an accumulation of cell subsets with S/G2/M phase-related gene and protein expression, likely representing cells arrested in, or progressing slowly through, the cell cycle. The increased frequency of cells in S/G2/M phase after HU was observed already among the most immature leukemic stem cells (LSC), and patients with a high fraction of LSC in the S/G2/M phase showed poor responsiveness to TKI treatment. We conclude that short-term HU treatment entails differentiation of erythroid progenitor cells and alters the characteristics of LSC in CML. The results imply that studies of LSC and progenitor populations in CML should take effects of initial HU therapy into account.
RESUMO
We analyzed magnitude and duration of SARS-CoV-2-specific T cell responses in healthy, infection-naïve subjects receiving COVID-19 vaccines. Overlapping peptides spanning the N-terminal spike 1 (S1) domain of the spike protein triggered secretion of the T cell-derived cytokine interleukin-2 ex vivo in 94/94 whole blood samples from vaccinated subjects at levels exceeding those recorded in all 45 pre-vaccination samples. S1-specific T cell reactivity was stronger in vaccinated subjects compared with subjects recovering from natural COVID-19 and decayed with an estimated half-life of 134 days in the first six months after the 2nd vaccination. We conclude that COVID-19 vaccination induces robust T cell immunity that subsequently declines. EudraCT 2021-000349-42. https://www.clinicaltrialsregister.eu/ctr-search/search?query=2021-000349-42.
Assuntos
COVID-19 , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Linfócitos T , Vacinação , Anticorpos AntiviraisRESUMO
BACKGROUND AND AIMS: Guillain-Barré syndrome (GBS) is a rare, acute neuropathy characterized by ascending muscle weakness. Age, axonal GBS variants, and antecedent Campylobacter jejuni infection are associated with severe GBS, but the detailed mechanisms of nerve damage are only partly explored. Pro-inflammatory myeloid cells express NADPH oxidases (NOX) that generate tissue-toxic reactive oxygen species (ROS) that are implicated in neurodegenerative diseases. This study analyzed the impact of variants of the gene encoding the functional NOX subunit CYBA (p22phox ) on acute severity, axonal damage, and recovery in adult GBS patients. METHODS: Extracted DNA from 121 patients was genotyped for allelic variation at rs1049254 and rs4673 within CYBA using real-time quantitative polymerase chain reaction. Serum neurofilament light chain was quantified by single molecule array. Patients were followed for severity and motor function recovery for up to 13 years. RESULTS: CYBA genotypes linked to reduced formation of ROS, i.e. rs1049254/G and rs4673/A, were significantly associated with unassisted ventilation, shorter time to normalization of serum neurofilament light chain and shorter time to regained motor function. Residual disability at follow-up was confined to patients carrying CYBA alleles associated with high formation of ROS. INTERPRETATION: These findings implicate NOX-derived ROS in GBS pathophysiology and CYBA alleles as biomarkers of severity.
Assuntos
Síndrome de Guillain-Barré , Adulto , Humanos , Alelos , Biomarcadores , Síndrome de Guillain-Barré/genética , Síndrome de Guillain-Barré/fisiopatologia , NADPH Oxidases/genética , Espécies Reativas de Oxigênio , Gravidade do PacienteRESUMO
BACKGROUND: Waning of immunoglobulin G (IgG) antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) complicates the diagnosis of past infection. The durability of T-cell memory against SARS-CoV-2 remains unclear, and most current T-cell protocols are unsuited for large-scale automation. METHODS: Whole-blood samples from 31 patients with verified past coronavirus disease 2019 (COVID-19) and 46 controls, of whom 40 received COVID-19 vaccine, were stimulated with peptides spanning the nucleocapsid (NC) or spike 1 (S1) regions of SARS-CoV-2 and analyzed for interferon γ in supernatant plasma. Diagnostic accuracy of these assays was evaluated against serum anti-NC and anti-receptor-binding domain S1-IgG. RESULTS: Induction of interferon γ in whole blood by NC or S1 peptides diagnosed past COVID-19 with high accuracy (area under the receiver operating characteristic curve, 0.93 and 0.95, respectively). In accordance with previous studies, NC-IgG levels rapidly waned with only 5 of 17 patients (29%) remaining seropositive >180 days after infection. By contrast, NC peptide-induced T-cell memory responses remained in 13 of 17 study participants (76%) >180 days after infection (Pâ =â .01 for comparison with NC-IgG; McNemar test). After 2 vaccine doses, all 18 donors exhibited S1-specific T-cell memory. CONCLUSIONS: Cytokine release assays for the monitoring of T-cell memory in whole blood may be useful for evaluating complications following unverified past COVID-19 and for long-term assessment of vaccine-induced T-cell immunity. CLINICAL TRIALS REGISTRATION: EudraCT 2021-000349-42.
Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , Interferon gama , Glicoproteína da Espícula de Coronavírus , Linfócitos TRESUMO
BACKGROUND AND PURPOSE: The NOX2 enzyme of myeloid cells generates reactive oxygen species (ROS) that have been implicated in the pathology of multiple sclerosis (MS). We aimed to determine the impact of genetic variation within CYBA, which encodes the functional CYBA/p22phox subunit of NOX2, on MS severity and progression. METHODS: One hundred three MS patients with up to 49 (median = 17) years follow-up time from first MS diagnosis were genotyped at the single nucleotide polymorphisms rs1049254 and rs4673 within CYBA. Results were matched with disease severity and time to diagnosis of secondary progressive MS (SPMS). NOX2-mediated formation of ROS was measured by chemiluminescence in blood myeloid cells from healthy donors (n = 55) with defined genotypes at rs1049254 and rs4673. RESULTS: The rs1049254/G and rs4673/A CYBA alleles were associated with reduced formation of ROS and were thus defined as low-ROS alleles. Patients carrying low-ROS alleles showed reduced multiple sclerosis severity score (p = 0.02, N = 103, linear regression) and delayed onset of SPMS (p = 0.02, hazard ratio [HR] = 0.46, n = 100, log-rank test). In a cohort examined after 2005, patients carrying low-ROS CYBA alleles showed >20 years longer time to secondary progression (p = 0.003, HR = 0.29, n = 59, log-rank test). CONCLUSIONS: These results implicate NOX2 in MS, in particular for the development of secondary progressive disease, and point toward NOX2-reductive therapy aiming to delay secondary progression.
Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , NADPH Oxidases , Genótipo , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla Crônica Progressiva/genética , NADPH Oxidases/genética , Polimorfismo de Nucleotídeo Único , Espécies Reativas de OxigênioRESUMO
Natural killer (NK) cell function is regulated by inhibitory receptors, such as the family of killer immunoglobulin-like receptors (KIRs) and the NKG2A/CD94 heterodimer. These receptors recognize cognate HLA class I molecules on potential target cells, and recent studies imply that an HLA-B dimorphism at position -21 in the gene segment encoding the leader peptide dictates whether NK cell regulation primarily relies on the KIRs or the NKG2A/CD94 receptor. The impact of this HLA-B dimorphism on NK cell-mediated destruction of leukemic cells or on the course of leukemia is largely unknown. In a first part of this study, we compared functions of NK cells in subjects carrying HLA-B -21M or 21T using interleukin-2 (IL-2)-activated NK cells and leukemic cells from patients with acute myeloid leukemia (AML). Subjects carrying HLA-B -21M harbored better-educated NKG2A+ NK cells and displayed superior capacity to degranulate lytic granules against KIR ligand-matched primary leukemic blasts. Second, we aimed to define the potential impact of HLA-B -21 variation on the course of AML in a phase 4 trial in which patients received IL-2-based immunotherapy. In keeping with the hypothesis that 21M may be associated with improved NK cell functionality, we observed superior leukemia-free survival and overall survival in -21M patients than in -21T patients during IL-2-based immunotherapy. We propose that genetic variation at HLA-B -21 may determine the antileukemic efficacy of activated NK cells and the clinical benefit of NK cell-activating immunotherapy.
Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Antígenos HLA-B/genética , Interleucina-2/uso terapêutico , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/terapia , Adolescente , Adulto , Idoso , Antígenos HLA-B/imunologia , Humanos , Imunoterapia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Pessoa de Meia-Idade , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Variantes Farmacogenômicos , Resultado do Tratamento , Células Tumorais Cultivadas , Adulto JovemRESUMO
Myeloid cell NADPH oxidase isoform 2 (NOX2) generates reactive oxygen species (ROS) that participate in defense against microbial pathogens. Humans with compromised NOX2-mediated ROS formation develop chronic granulomatous disease characterized by recurrent bacterial and fungal infections. Additionally, impaired NOX2 function entails hyperactive lymphocytes and autoimmunity in humans and in murine models. The impact of NOX2 and ROS on cancer development is only partly explored. Recent research published in the Journal of Pathology showed that genetic depletion of any of the NOX2 subunits Cyba, Cybb, Ncf1, Ncf2 and Ncf4 reduced the formation of lung metastases following intravenous injection of murine tumor cells. These findings, together with the role of NOX2 in maintaining self-tolerance, imply that NOX2 is a targetable immune checkpoint in cancer. In particular, the possibility of modulating NOX2 to improve lymphocyte-mediated control of metastatic cells merits further investigation. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Assuntos
NADPH Oxidases/genética , Neoplasias , Animais , Autoimunidade , Granuloma , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Espécies Reativas de Oxigênio , Reino UnidoRESUMO
Myxoid liposarcoma (MLS) shows extensive intratumoural heterogeneity with distinct subpopulations of tumour cells. Despite improved survival of MLS patients, existing therapies have shortcomings as they fail to target all tumour cells. The nature of chemotherapy-resistant cells in MLS remains unknown. Here, we show that MLS cell lines contained subpopulations of cells that can form spheres, efflux Hoechst dye and resist doxorubicin, all properties attributed to cancer stem cells (CSCs). By single-cell gene expression, western blot, phospho-kinase array, immunoprecipitation, immunohistochemistry, flow cytometry and microarray analysis we showed that a subset of MLS cells expressed JAK-STAT genes with active signalling. JAK1/2 inhibition via ruxolitinib decreased, while stimulation with LIF increased, phosphorylation of STAT3 and the number of cells with CSC properties indicating that JAK-STAT signalling controlled the number of cells with CSC features. We also show that phosphorylated STAT3 interacted with the SWI/SNF complex. We conclude that MLS contains JAK-STAT-regulated subpopulations of cells with CSC features. Combined doxorubicin and ruxolitinib treatment targeted both proliferating cells as well as cells with CSC features, providing new means to circumvent chemotherapy resistance in treatment of MLS patients.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Lipossarcoma Mixoide/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Janus Quinases/metabolismo , Lipossarcoma Mixoide/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Nitrilas , Fosforilação , Pirazóis/farmacologia , Pirimidinas , Fatores de Transcrição STAT/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismoRESUMO
Myeloid-derived suppressor cells (MDSCs) are immature monocytes and granulocytes that impede immune-mediated clearance of malignant cells by multiple mechanisms, including the formation of immunosuppressive reactive oxygen species (ROS) via the myeloid cell NADPH oxidase (NOX2). Histamine dihydrochloride (HDC), a NOX2 inhibitor, exerts anti-cancer efficacy in experimental tumor models but the detailed mechanisms are insufficiently understood. To determine effects of HDC on the MDSC compartment we utilized three murine cancer models known to entail accumulation of MDSC, i.e. EL-4 lymphoma, MC-38 colorectal carcinoma, and 4T1 mammary carcinoma. In vivo treatment with HDC delayed EL-4 and 4T1 tumor growth and reduced the ROS formation by intratumoral MDSCs. HDC treatment of EL-4 bearing mice also reduced the accumulation of intratumoral MDSCs and reduced MDSC-induced suppression of T cells ex vivo. Experiments using GR1-depleted and Nox2 knock out mice supported that the anti-tumor efficacy of HDC required presence of NOX2+ GR1+ cells in vivo. In addition, treatment with HDC enhanced the anti-tumor efficacy of programmed cell death receptor 1 (PD-1) and PD-1 ligand checkpoint blockade in EL-4- and MC-38-bearing mice. Immunomodulatory effects of a HDC-containing regimen on MDSCs were further analyzed in a phase IV trial (Re:Mission Trial, ClinicalTrials.gov; NCT01347996) where patients with acute myeloid leukemia received HDC in conjunction with low-dose IL-2 (HDC/IL-2) for relapse prevention. Peripheral CD14+HLA-DR-/low MDSCs (M-MDSCs) were reduced during cycles of HDC/IL-2 therapy and a pronounced reduction of M-MDSCs during HDC/IL-2 treatment heralded favorable clinical outcome. We propose that anti-tumor properties of HDC may comprise the targeting of MDSCs.
Assuntos
Anticorpos/farmacologia , Histamina/farmacologia , Células Supressoras Mieloides/efeitos dos fármacos , Neoplasias Experimentais/tratamento farmacológico , Adulto , Animais , Anticorpos/imunologia , Anticorpos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Ensaios Clínicos Fase IV como Assunto , Intervalo Livre de Doença , Sinergismo Farmacológico , Feminino , Histamina/uso terapêutico , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Resultado do TratamentoRESUMO
A peculiar trait of pneumococci (Streptococcus pneumoniae) is their propensity to undergo spontaneous lysis during stationary growth due to activation of the enzyme autolysin (LytA), which fragments the peptidoglycan cell wall. The fragments that are generated upon autolysis impair phagocytosis and reduce production of interleukin-12 (IL-12) and gamma interferon (IFN-γ) by human leukocytes in response to intact pneumococci, thereby impeding crucial host defenses. The objective was to identify additional monocyte genes whose transcription is induced by intact pneumococci and subverted by autolyzed bacteria. Monocytes were isolated from healthy blood donors and stimulated for 3 h with UV-inactivated S. pneumoniae (Rx1PLY- LytA+ strain), which is capable of autolyzing, its LytA- isogenic autolysin-deficient mutant, or a mixture of the two (containing twice the initial bacterial concentration). Gene expression was assessed by Illumina microarray, and selected findings were confirmed by reverse transcription-quantitative real-time PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and flow cytometry. In all, we identified 121 genes that were upregulated to a significantly higher degree by intact than autolyzed pneumococci. These included IFNB1 and a large set of interferon-induced genes, such as IFIT3, RSAD2, CFCL1, and CXCL10 genes, as well as IL12B and CD40 genes. RT-qPCR revealed that transcription of these genes in response to intact pneumococci diminished when autolyzed pneumococci were admixed and that this pattern was independent of pneumolysin. Thus, transcription of interferon-related genes is triggered by intact pneumococci and subverted by fragments generated by spontaneous bacterial autolysis. We suggest that interferon-related pathways are important for elimination of pneumococci and that autolysis contributes to virulence by extinguishing these pathways.
Assuntos
Fatores Imunológicos/biossíntese , Monócitos/imunologia , Monócitos/microbiologia , Streptococcus pneumoniae/imunologia , Bacteriólise , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Fatores Imunológicos/genética , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Regulatory T cells (Tregs) have been proposed to dampen functions of anti-neoplastic immune cells and thus promote cancer progression. In a phase IV trial (Re:Mission Trial, NCT01347996, http://www.clinicaltrials.gov ) 84 patients (age 18-79) with acute myeloid leukemia (AML) in first complete remission (CR) received ten consecutive 3-week cycles of immunotherapy with histamine dihydrochloride (HDC) and low-dose interleukin-2 (IL-2) to prevent relapse of leukemia in the post-consolidation phase. This study aimed at defining the features, function and dynamics of Foxp3+CD25highCD4+ Tregs during immunotherapy and to determine the potential impact of Tregs on relapse risk and survival. We observed a pronounced increase in Treg counts in peripheral blood during initial cycles of HDC/IL-2. The accumulating Tregs resembled thymic-derived natural Tregs (nTregs), showed augmented expression of CTLA-4 and suppressed the cell cycle proliferation of conventional T cells ex vivo. Relapse of AML was not prognosticated by Treg counts at onset of treatment or after the first cycle of immunotherapy. However, the magnitude of Treg induction was diminished in subsequent treatment cycles. Exploratory analyses implied that a reduced expansion of Tregs in later treatment cycles and a short Treg telomere length were significantly associated with a favorable clinical outcome. Our results suggest that immunotherapy with HDC/IL-2 in AML entails induction of immunosuppressive Tregs that may be targeted for improved anti-leukemic efficiency.
Assuntos
Imunoterapia/métodos , Leucemia Mieloide/imunologia , Leucemia Mieloide/terapia , Linfócitos T Reguladores/imunologia , Doença Aguda , Adolescente , Adulto , Idoso , Feminino , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Histamina/imunologia , Histamina/uso terapêutico , Humanos , Interleucina-2/imunologia , Interleucina-2/uso terapêutico , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Leucemia Mieloide/patologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Recidiva Local de Neoplasia , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Prognóstico , Modelos de Riscos Proporcionais , Indução de Remissão , Linfócitos T Reguladores/metabolismo , Telômero/genética , Adulto JovemRESUMO
Polymorphonuclear neutrophils (PMNs) are innate effector cells with pivotal roles in pathogen recognition, phagocytosis, and eradication. However, their role in the development of subsequent immune responses is incompletely understood. This study aimed to identify mechanisms of relevance to the cross talk between human neutrophils and NK cells and its potential role in promoting adaptive immunity. TLR-stimulated PMNs were found to release soluble mediators to attract and activate NK cells in vitro. PMN-conditioned NK cells displayed enhanced cytotoxicity and cytokine production, and responded vigorously to ensuing stimulation with exogenous and endogenous IL-12. The neutrophil-induced activation of NK cells was prevented by caspase-1 inhibitors and by natural antagonists to IL-1 and IL-18, suggesting a role for the NOD-like receptor family pyrin domain containing-3 inflammasome. In addition, PMN-conditioned NK cells triggered the maturation of monocyte-derived dendritic cells, which promoted T cell proliferation and IFN-γ production. These data imply that neutrophils attract NK cells to sites of infection to convert these cells into an active state, which drives adaptive immune responses via maturation of dendritic cells. Our results add to a growing body of evidence that suggests a sophisticated role for neutrophils in orchestrating the immune response to pathogens.
Assuntos
Imunidade Adaptativa/imunologia , Comunicação Celular/imunologia , Células Dendríticas/citologia , Células Matadoras Naturais/imunologia , Neutrófilos/imunologia , Linfócitos T/imunologia , Proteínas de Transporte/imunologia , Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Diferenciação Celular/imunologia , Proliferação de Células , Células Cultivadas , Células Dendríticas/imunologia , Humanos , Inflamassomos/imunologia , Interferon gama/biossíntese , Subunidade p35 da Interleucina-12/imunologia , Interleucina-18/antagonistas & inibidores , Interleucina-1beta/antagonistas & inibidores , Ativação Linfocitária/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLRRESUMO
The efficiency of immune-mediated clearance of cancer cells is hampered by immunosuppressive mediators in the malignant microenvironment, including NADPH oxidase-derived reactive oxygen species. We aimed at defining the effects of histamine, an inhibitor of the myeloid NADPH oxidase/NOX2, on the development of Ag-presenting dendritic cells (DCs) from myeloid precursors and the impact of these mechanisms for tumor growth. Histamine was found to promote the maturation of human DCs from monocytes by increasing the expression of HLA-DR and costimulatory molecules, which resulted in improved induction of Th cells with Th0 polarity. Experiments using wild-type and NOX2-deficient myelomonoblastic cells showed that histamine facilitated myeloid cell maturation only in cells capable of generating reactive oxygen species. Treatment of mice with histamine reduced the growth of murine EL-4 lymphomas in parallel with an increment of tumor-infiltrating DCs in NOX2-sufficient mice but not in NOX2-deficient (gp91(phox) (-/-)) mice. We propose that strategies to target the myeloid NADPH oxidase may facilitate the development of endogenous DCs in cancer.