Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(41): e2414618121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39361641

RESUMO

The transcription factor E2F1 serves as a regulator of the cell cycle and promotes cell proliferation. It is highly expressed in cancer tissues and contributes to their malignant transformation. Degradation by the ubiquitin-proteasome system may help to prevent such overexpression of E2F1 and thereby to suppress carcinogenesis. A detailed understanding of the mechanisms underlying E2F1 degradation may therefore inform the development of new cancer treatments. We here identified SCFFBXW7 as a ubiquitin ligase for E2F1 by comprehensive analysis. We found that phosphorylation of E2F1 at serine-403 promotes its binding to FBXW7 (F-box/WD repeat-containing protein 7) followed by its ubiquitination and degradation. Furthermore, calcineurin, a Ca2+/calmodulin-dependent serine-threonine phosphatase, was shown to stabilize E2F1 by mediating its dephosphorylation at serine-403 and thereby preventing FBXW7 binding. Treatment of cells with Ca2+ channel blockers resulted in downregulation of both E2F1 protein and the expression of E2F1 target genes, whereas treatment with the Ca2+ ionophore ionomycin induced upregulation of E2F1. Finally, the calcineurin inhibitor FK506 attenuated xenograft tumor growth in mice in association with downregulation of E2F1 in the tumor tissue. Impairment of the balance between the opposing actions of FBXW7 and calcineurin in the regulation of E2F1 abundance may therefore play an important role in carcinogenesis.


Assuntos
Calcineurina , Fator de Transcrição E2F1 , Proteína 7 com Repetições F-Box-WD , Proteína 7 com Repetições F-Box-WD/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Calcineurina/metabolismo , Calcineurina/genética , Humanos , Fosforilação , Animais , Camundongos , Ubiquitinação , Ligação Proteica , Células HEK293 , Tacrolimo/farmacologia , Linhagem Celular Tumoral , Estabilidade Proteica , Proteólise
2.
Nucleic Acids Res ; 51(9): 4451-4466, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37094077

RESUMO

Interferon regulatory factor 1 (IRF1) is a critical component of cell-intrinsic innate immunity that regulates both constitutive and induced antiviral defenses. Due to its short half-life, IRF1 function is generally considered to be regulated by its synthesis. However, how IRF1 activity is controlled post-translationally has remained poorly characterized. Here, we employed a proteomics approach to identify proteins interacting with IRF1, and found that CSNK2B, a regulatory subunit of casein kinase 2, interacts directly with IRF1 and constitutively modulates its transcriptional activity. Genome-wide CUT&RUN analysis of IRF1 binding loci revealed that CSNK2B acts generally to enhance the binding of IRF1 to chromatin, thereby enhancing transcription of key antiviral genes, such as PLAAT4 (also known as RARRES3/RIG1/TIG3). On the other hand, depleting CSNK2B triggered abnormal accumulation of IRF1 at AFAP1 loci, thereby down-regulating transcription of AFAP1, revealing contrary effects of CSNK2B on IRF1 binding at different loci. AFAP1 encodes an actin crosslinking factor that mediates Src activation. Importantly, CSNK2B was also found to mediate phosphorylation-dependent activation of AFAP1-Src signaling and exert suppressive effects against flaviviruses, including dengue virus. These findings reveal a previously unappreciated mode of IRF1 regulation and identify important effector genes mediating multiple cellular functions governed by CSNK2B and IRF1.


Assuntos
Caseína Quinase II , DNA , Fator Regulador 1 de Interferon , Viroses , Cromatina , DNA/genética , Fator Regulador 1 de Interferon/genética , Transdução de Sinais/genética , Humanos , Caseína Quinase II/genética , Imunidade Inata , Viroses/genética , Viroses/imunologia
3.
Proc Natl Acad Sci U S A ; 119(15): e2110256119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394865

RESUMO

Estrogen receptor α (ERα) is a transcription factor that induces cell proliferation and exhibits increased expression in a large subset of breast cancers. The molecular mechanisms underlying the up-regulation of ERα activity, however, remain poorly understood. We identified FK506-binding protein 52 (FKBP52) as a factor associated with poor prognosis of individuals with ERα-positive breast cancer. We found that FKBP52 interacts with breast cancer susceptibility gene 1 and stabilizes ERα, and is essential for breast cancer cell proliferation. FKBP52 depletion resulted in decreased ERα expression and proliferation in breast cancer cell lines, including MCF7-derived fulvestrant resistance (MFR) cells, suggesting that inhibiting FKBP52 may provide a therapeutic effect for endocrine therapy­resistant breast cancer. In contrast, FKBP51, a closely related molecule to FKBP52, reduced the stability of ERα. Consistent with these findings, FKBP51 was more abundantly expressed in normal tissues than in cancer cells, suggesting that these FKBPs may function in the opposite direction. Collectively, our study shows that FKBP52 and FKBP51 regulate ERα stability in a reciprocal manner and reveals a regulatory mechanism by which the expression of ERα is controlled.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Proteínas de Ligação a Tacrolimo , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Estabilidade Proteica , Proteínas de Ligação a Tacrolimo/metabolismo
4.
Int J Cancer ; 155(3): 582-594, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38380807

RESUMO

The proto-oncogene MYCN expression marked a cancer stem-like cell population in hepatocellular carcinoma (HCC) and served as a therapeutic target of acyclic retinoid (ACR), an orally administered vitamin A derivative that has demonstrated promising efficacy and safety in reducing HCC recurrence. This study investigated the role of MYCN as a predictive biomarker for therapeutic response to ACR and prognosis of HCC. MYCN gene expression in HCC was analyzed in the Cancer Genome Atlas and a Taiwanese cohort (N = 118). Serum MYCN protein levels were assessed in healthy controls (N = 15), patients with HCC (N = 116), pre- and post-surgical patients with HCC (N = 20), and a subset of patients from a phase 3 clinical trial of ACR (N = 68, NCT01640808). The results showed increased MYCN gene expression in HCC tumors, which positively correlated with HCC recurrence in non-cirrhotic or single-tumor patients. Serum MYCN protein levels were higher in patients with HCC, decreased after surgical resection of HCC, and were associated with liver functional reserve and fibrosis markers, as well as long-term HCC prognosis (>4 years). Subgroup analysis of a phase 3 clinical trial of ACR identified serum MYCN as the risk factor most strongly associated with HCC recurrence. Patients with HCC with higher serum MYCN levels after a 4-week treatment of ACR exhibited a significantly higher risk of recurrence (hazard ratio 3.27; p = .022). In conclusion, serum MYCN holds promise for biomarker-based precision medicine for the prevention of HCC, long-term prognosis of early-stage HCC, and identification of high-response subgroups for ACR-based treatment.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína Proto-Oncogênica N-Myc , Recidiva Local de Neoplasia , Proto-Oncogene Mas , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/patologia , Proteína Proto-Oncogênica N-Myc/genética , Recidiva Local de Neoplasia/prevenção & controle , Recidiva Local de Neoplasia/sangue , Prognóstico
5.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34711683

RESUMO

Estrogen receptor α (ER-α) mediates estrogen-dependent cancer progression and is expressed in most breast cancer cells. However, the molecular mechanisms underlying the regulation of the cellular abundance and activity of ER-α remain unclear. We here show that the protein phosphatase calcineurin regulates both ER-α stability and activity in human breast cancer cells. Calcineurin depletion or inhibition down-regulated the abundance of ER-α by promoting its polyubiquitination and degradation. Calcineurin inhibition also promoted the binding of ER-α to the E3 ubiquitin ligase E6AP, and calcineurin mediated the dephosphorylation of ER-α at Ser294 in vitro. Moreover, the ER-α (S294A) mutant was more stable and activated the expression of ER-α target genes to a greater extent compared with the wild-type protein, whereas the extents of its interaction with E6AP and polyubiquitination were attenuated. These results suggest that the phosphorylation of ER-α at Ser294 promotes its binding to E6AP and consequent degradation. Calcineurin was also found to be required for the phosphorylation of ER-α at Ser118 by mechanistic target of rapamycin complex 1 and the consequent activation of ER-α in response to ß-estradiol treatment. Our study thus indicates that calcineurin controls both the stability and activity of ER-α by regulating its phosphorylation at Ser294 and Ser118 Finally, the expression of the calcineurin A-α gene (PPP3CA) was associated with poor prognosis in ER-α-positive breast cancer patients treated with tamoxifen or other endocrine therapeutic agents. Calcineurin is thus a promising target for the development of therapies for ER-α-positive breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Calcineurina/metabolismo , Receptor alfa de Estrogênio/metabolismo , Calcineurina/fisiologia , Linhagem Celular Tumoral , Estradiol/farmacologia , Receptor alfa de Estrogênio/efeitos dos fármacos , Estrogênios/metabolismo , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/efeitos dos fármacos
6.
Biochem Biophys Res Commun ; 641: 84-92, 2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36525928

RESUMO

The epidermal growth factor receptor (EGFR) is highly expressed or abnormally activated in several types of cancers, such as lung and colorectal cancers. Inhibitors that suppress the tyrosine kinase activity of EGFR have been used in the treatment of lung cancer. However, resistance to these inhibitors has become an issue in cancer treatment, and the development of new therapies that inhibit EGFR is desired. We found that calcineurin, a Ca2+/calmodulin-activated serine/threonine phosphatase, is a novel regulator of EGFR. Inhibition of calcineurin by FK506 treatment or calcineurin depletion promoted EGFR degradation in cancer cells. In addition, we found that calcineurin dephosphorylates EGFR at serine (S)1046/1047, which in turn stabilizes EGFR. Furthermore, in human colon cancer cells transplanted into mice, the inhibition of calcineurin by FK506 decreased EGFR expression. These results indicate that calcineurin stabilizes EGFR by dephosphorylating S1046/1047 and promotes tumor growth. These findings suggest that calcineurin may be a new therapeutic target for cancers with high EGFR expression or activation.


Assuntos
Calcineurina , Tacrolimo , Humanos , Animais , Camundongos , Calcineurina/metabolismo , Tacrolimo/farmacologia , Serina/metabolismo , Receptores ErbB/metabolismo , Fosforilação
7.
Liver Int ; 43(8): 1677-1690, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312620

RESUMO

BACKGROUND AND AIMS: The future development of hepatocellular carcinoma (HCC) in patients after sustained virologic response (SVR) is an important issue. The purposes of this study were to investigate pathological alterations in organelle of the liver of SVR patients and to characterize organelle abnormalities that may be related to carcinogenesis after SVR. METHODS: The ultrastructure of liver biopsy specimens from patients with chronic hepatitis C (CHC) and SVR were compared to cell and mouse models and assessed semi-quantitatively using transmission electron microscopy. RESULTS: Hepatocytes in patients with CHC showed abnormalities in the nucleus, mitochondria, endoplasmic reticulum, lipid droplet, and pericellular fibrosis, comparable to those seen in hepatitis C virus (HCV)-infected mice and cells. DAA treatment significantly reduced organelle abnormalities such as the nucleus, mitochondria, and lipid droplet in the hepatocytes of patients and mice after SVR, and cured cells, but it did not change dilated/degranulated endoplasmic reticulum and pericellular fibrosis in patients and mice after SVR. Further, samples from patients with a post-SVR period of >1 year had significantly larger numbers of abnormalities in the mitochondria and endoplasmic reticulum than those of <1 year. A possible cause of organelle abnormalities in patients after SVR could be oxidative stress of the endoplasmic reticulum and mitochondria associated with abnormalities of the vascular system due to fibrosis. Interestingly, abnormal endoplasmic reticulum was associated with patients with HCC for >1 year after SVR. CONCLUSIONS: These results indicate that patients with SVR exhibit a persistent disease state and require long-term follow-up to detect early signs of carcinogenesis.


Assuntos
Carcinoma Hepatocelular , Hepatite C Crônica , Hepatite C , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Antivirais/uso terapêutico , Neoplasias Hepáticas/patologia , Hepacivirus , Hepatite C/tratamento farmacológico , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Resposta Viral Sustentada , Cirrose Hepática/complicações , Organelas/patologia , Carcinogênese/patologia
8.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163061

RESUMO

Calcineurin, a calcium-dependent serine/threonine phosphatase, integrates the alterations in intracellular calcium levels into downstream signaling pathways by regulating the phosphorylation states of several targets. Intracellular Ca2+ is essential for normal cellular physiology and cell cycle progression at certain critical stages of the cell cycle. Recently, it was reported that calcineurin is activated in a variety of cancers. Given that abnormalities in calcineurin signaling can lead to malignant growth and cancer, the calcineurin signaling pathway could be a potential target for cancer treatment. For example, NFAT, a typical substrate of calcineurin, activates the genes that promote cell proliferation. Furthermore, cyclin D1 and estrogen receptors are dephosphorylated and stabilized by calcineurin, leading to cell proliferation. In this review, we focus on the cell proliferative functions and regulatory mechanisms of calcineurin and summarize the various substrates of calcineurin. We also describe recent advances regarding dysregulation of the calcineurin activity in cancer cells. We hope that this review will provide new insights into the potential role of calcineurin in cancer development.


Assuntos
Calcineurina/metabolismo , Cálcio/metabolismo , Neoplasias/metabolismo , Ciclo Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição NFATC/metabolismo , Fosforilação , Transdução de Sinais
9.
Cancer Sci ; 112(7): 2739-2752, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33939241

RESUMO

DNA damage induces transcriptional repression of E2F1 target genes and a reduction in histone H3-Thr11 phosphorylation (H3-pThr11 ) at E2F1 target gene promoters. Dephosphorylation of H3-pThr11 is partly mediated by Chk1 kinase and protein phosphatase 1γ (PP1γ) phosphatase. Here, we isolated NIPP1 as a regulator of PP1γ-mediated H3-pThr11 by surveying nearly 200 PP1 interactor proteins. We found that NIPP1 inhibits PP1γ-mediated dephosphorylation of H3-pThr11 both in vivo and in vitro. By generating NIPP1-depleted cells, we showed that NIPP1 is required for cell proliferation and the expression of E2F1 target genes. Upon DNA damage, activated protein kinase A (PKA) phosphorylated the NIPP1-Ser199 residue, adjacent to the PP1 binding motif (RVxF), and triggered the dissociation of NIPP1 from PP1γ, leading to the activation of PP1γ. Furthermore, the inhibition of PKA activity led to the activation of E2F target genes. Statistical analysis confirmed that the expression of NIPP1 was positively correlated with E2F target genes. Taken together, these findings demonstrate that the PP1 regulatory subunit NIPP1 modulates E2F1 target genes by linking PKA and PP1γ during DNA damage.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dano ao DNA , Fator de Transcrição E2F1/genética , Endorribonucleases/metabolismo , Histonas/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 1/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sistemas CRISPR-Cas , Proliferação de Células , Células Cultivadas , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Endorribonucleases/deficiência , Endorribonucleases/isolamento & purificação , Repressão Epigenética , Regulação da Expressão Gênica , Humanos , Fosfoproteínas Fosfatases/deficiência , Fosfoproteínas Fosfatases/isolamento & purificação , Fosforilação , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação , Receptores de Neuropeptídeo Y/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Raios Ultravioleta
10.
J Gastroenterol Hepatol ; 36(4): 1126-1135, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32839985

RESUMO

BACKGROUND AND AIM: Direct-acting antiviral (DAA) therapies have been proven to be highly effective for the eradication of hepatitis C virus (HCV) without resistance-associated substitutions (RASs). However, even in cases with no detected RASs, treatment sometimes fails, suggestive of the existence of some host-related factors involved in HCV eradication by DAAs. To explore such factors, we analyzed the serum microRNAs (miRNAs) of patients who received DAA treatment. METHODS: The serum miRNA expression levels of 39 patients with chronic HCV infection without any detectable RASs, who achieved sustained virological response with asunaprevir/daclatasvir or grazoprevir/elbasvir therapy, were investigated cyclopedically, using oligonucleotide microarrays. The effects of specific miRNAs on the replication of HCV were measured in the HCV genomic replicon containing Huh-7 hepatoma cells. RESULTS: Along with the disappearance of HCV, the expression quantiles of 16 miRNAs in the asunaprevir/daclatasvir group and 18 miRNAs in the grazoprevir/elbasvir group showed a tendency to increase or decrease. Among these molecules, adjustments for multiple testing yielded a significant differential expression at a false discovery rate of less than 5% for only one molecule, hsa-miR-762. Its expression quantile increased after HCV exclusion in all patients who had achieved sustained virological response. Quantitative polymerase chain reaction analysis validated a significant increase in the serum hsa-miR-762 after disappearance of HCV. On the contrary, hsa-miR-762 was decreased in the relapse and breakthrough of HCV in DAA failures. Transfection of hsa-miR-762 into cultured HCV-infected hepatocytes significantly decreased HCV-RNA replication. CONCLUSION: These data suggest that hsa-miR-762 is one of the host factors participating in HCV exclusion by DAA therapy.


Assuntos
Amidas/administração & dosagem , Antivirais/administração & dosagem , Benzofuranos/administração & dosagem , Carbamatos/administração & dosagem , Ciclopropanos/administração & dosagem , Genótipo , Hepacivirus/genética , Hepatite C Crônica/diagnóstico , Hepatite C Crônica/tratamento farmacológico , Imidazóis/administração & dosagem , Isoquinolinas/administração & dosagem , MicroRNAs/sangue , Pirrolidinas/administração & dosagem , Quinoxalinas/administração & dosagem , Sulfonamidas/administração & dosagem , Valina/análogos & derivados , Biomarcadores/sangue , Erradicação de Doenças , Quimioterapia Combinada , Feminino , Hepatite C Crônica/genética , Hepatite C Crônica/virologia , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Valina/administração & dosagem
11.
Proc Natl Acad Sci U S A ; 115(19): 4969-4974, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686061

RESUMO

Hepatocellular carcinoma (HCC) is a highly lethal cancer that has a high rate of recurrence, in part because of cancer stem cell (CSC)-dependent field cancerization. Acyclic retinoid (ACR) is a synthetic vitamin A-like compound capable of preventing the recurrence of HCC. Here, we performed a genome-wide transcriptome screen and showed that ACR selectively suppressed the expression of MYCN, a member of the MYC family of basic helix-loop-helix-zipper transcription factors, in HCC cell cultures, animal models, and liver biopsies obtained from HCC patients. MYCN expression in human HCC was correlated positively with both CSC and Wnt/ß-catenin signaling markers but negatively with mature hepatocyte markers. Functional analysis showed repressed cell-cycle progression, proliferation, and colony formation, activated caspase-8, and induced cell death in HCC cells following silencing of MYCN expression. High-content single-cell imaging analysis and flow cytometric analysis identified a MYCN+ CSC subpopulation in the heterogeneous HCC cell cultures and showed that these cells were selectively killed by ACR. Particularly, EpCAM+ cells isolated using a cell-sorting system showed increased MYCN expression and sensitivity to ACR compared with EpCAM- cells. In a long-term (>10 y) follow-up study of 102 patients with HCC, MYCN was expressed at higher levels in the HCC tumor region than in nontumor regions, and there was a positive correlation between MYCN expression and recurrence of de novo HCC but not metastatic HCC after curative treatment. In summary, these results suggest that MYCN serves as a prognostic biomarker and therapeutic target of ACR for liver CSCs in de novo HCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/prevenção & controle , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/prevenção & controle , Proteína Proto-Oncogênica N-Myc/biossíntese , Células-Tronco Neoplásicas/metabolismo , Tretinoína/análogos & derivados , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Prognóstico , Tretinoína/farmacologia
12.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769072

RESUMO

Inhaled nebulized interferon (IFN)-α and IFN-ß have been shown to be effective in the management of coronavirus disease 2019 (COVID-19). We aimed to construct a virus-free rapid detection system for high-throughput screening of IFN-like compounds that induce viral RNA degradation and suppress the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We prepared a SARS-CoV-2 subreplicon RNA expression vector which contained the SARS-CoV-2 5'-UTR, the partial sequence of ORF1a, luciferase, nucleocapsid, ORF10, and 3'-UTR under the control of the cytomegalovirus promoter. The expression vector was transfected into Calu-3 cells and treated with IFN-α and the IFNAR2 agonist CDM-3008 (RO8191) for 3 days. SARS-CoV-2 subreplicon RNA degradation was subsequently evaluated based on luciferase levels. IFN-α and CDM-3008 suppressed SARS-CoV-2 subreplicon RNA in a dose-dependent manner, with IC50 values of 193 IU/mL and 2.54 µM, respectively. HeLa cells stably expressing SARS-CoV-2 subreplicon RNA were prepared and treated with the IFN-α and pan-JAK inhibitor Pyridone 6 or siRNA-targeting ISG20. IFN-α activity was canceled with Pyridone 6. The knockdown of ISG20 partially canceled IFN-α activity. Collectively, we constructed a virus-free rapid detection system to measure SARS-CoV-2 RNA suppression. Our data suggest that the SARS-CoV-2 subreplicon RNA was degraded by IFN-α-induced ISG20 exonuclease activity.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Interferon-alfa/farmacologia , RNA Viral/metabolismo , SARS-CoV-2/genética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Exorribonucleases/genética , Vetores Genéticos , Células HeLa , Humanos , Interferon-alfa/administração & dosagem , Luciferases/genética , Luciferases/metabolismo , Naftiridinas/administração & dosagem , Naftiridinas/farmacologia , Oxidiazóis/administração & dosagem , Oxidiazóis/farmacologia , RNA Viral/efeitos dos fármacos , Replicon
13.
J Infect Chemother ; 26(7): 769-774, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32417263

RESUMO

Studies have shown that pneumococcal vaccination reduces the incidence of Streptococcus pneumoniae infections but does not change the prevalence of S. pneumoniae nasopharyngeal colonization. To comprehensively and longitudinally assess the epidemiology of S. pneumoniae after the introduction of pneumococcal vaccination, we monitored the prevalence and antimicrobial susceptibility of S. pneumoniae, irrespective of its serotypes or pathogenicity, by analyzing specimens collected from a large number of patients at Jikei University Hospitals from 2009 to 2017. A total of 5763 S. pneumoniae isolates were identified out of 375,435 specimens from various sources of patients in different age groups. The prevalence of S. pneumoniae isolated only from patients <5 years old was significantly reduced with the widespread use of pneumococcal vaccines, although this reduction differed by areas where patients resided. The incidence of pneumococcal infections, including bacteremia and otitis media, clearly decreased among patients <5 years old after the introduction of pneumococcal vaccination, while the prevalence of S. pneumoniae isolated from blood specimens of patients 15-64 years old increased, suggesting the involvement of non-vaccine serotypes in the incidence of invasive pneumococcal infections. The antimicrobial susceptibility of S. pneumoniae improved after the introduction of pneumococcal vaccination. Our results show that pneumococcal vaccination has a suppressive effect on the prevalence of S. pneumoniae and the incidence of pneumococcal infections, at least for children <5 years old, in association with an improvement in the antimicrobial susceptibility of S. pneumoniae. However, further measures will be needed to control invasive pneumococcal infections caused by non-vaccine serotypes.


Assuntos
Antibacterianos/farmacologia , Programas de Imunização , Infecções Pneumocócicas/epidemiologia , Vacinas Pneumocócicas/administração & dosagem , Streptococcus pneumoniae/efeitos dos fármacos , Adolescente , Adulto , Fatores Etários , Idoso , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Criança , Pré-Escolar , Feminino , Hospitais Universitários/estatística & dados numéricos , Humanos , Incidência , Japão/epidemiologia , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Otite Média/tratamento farmacológico , Otite Média/epidemiologia , Otite Média/microbiologia , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Prevalência , Avaliação de Programas e Projetos de Saúde , Fatores de Risco , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/isolamento & purificação , Resultado do Tratamento , Adulto Jovem
14.
J Virol ; 89(10): 5362-70, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740995

RESUMO

UNLABELLED: Hepatitis C virus (HCV) NS3 is a multifunctional protein composed of a protease domain and a helicase domain linked by a flexible linker. Protease activity is required to generate viral nonstructural (NS) proteins involved in RNA replication. Helicase activity is required for RNA replication, and genetic evidence implicates the helicase domain in virus assembly. Binding of protease inhibitors (PIs) to the protease active site blocks NS3-dependent polyprotein processing but might impact other steps of the virus life cycle. Kinetic analyses of antiviral suppression of cell culture-infectious genotype 1a strain H77S.3 were performed using assays that measure different readouts of the viral life cycle. In addition to the active-site PI telaprevir, we examined an allosteric protease-helicase inhibitor (APHI) that binds a site in the interdomain interface. By measuring nucleotide incorporation into HCV genomes, we found that telaprevir inhibits RNA synthesis as early as 12 h at high but clinically relevant concentrations. Immunoblot analyses showed that NS5B abundance was not reduced until after 12 h, suggesting that telaprevir exerts a direct effect on RNA synthesis. In contrast, the APHI could partially inhibit RNA synthesis, suggesting that the allosteric site is not always available during RNA synthesis. The APHI and active-site PI were both able to block virus assembly soon (<12 h) after drug treatment, suggesting that they rapidly engage with and block a pool of NS3 involved in assembly. In conclusion, PIs and APHIs can block NS3 functions in RNA synthesis and virus assembly, in addition to inhibiting polyprotein processing. IMPORTANCE: The NS3/4A protease of hepatitis C virus (HCV) is an important antiviral target. Currently, three PIs have been approved for therapy of chronic hepatitis C, and several others are in development. NS3-dependent cleavage of the HCV polyprotein is required to generate the mature nonstructural proteins that form the viral replicase. Inhibition of protease activity can block RNA replication by preventing expression of mature replicase components. Like many viral proteins, NS3 is multifunctional, but how PIs affect stages of the HCV life cycle beyond polyprotein processing has not been well studied. Using cell-based assays, we show here that PIs can directly inhibit viral RNA synthesis and also block a late stage in virus assembly/maturation at clinically relevant concentrations.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/fisiologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/fisiologia , Montagem de Vírus/efeitos dos fármacos , Montagem de Vírus/fisiologia , Antivirais/farmacologia , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Oligopeptídeos/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Viral/biossíntese , Proteínas não Estruturais Virais/metabolismo
15.
Proc Natl Acad Sci U S A ; 110(5): 1881-6, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23248316

RESUMO

Hepatitis C virus (HCV) replication is dependent on microRNA 122 (miR-122), a liver-specific microRNA that recruits Argonaute 2 to the 5' end of the viral genome, stabilizing it and slowing its decay both in cell-free reactions and in infected cells. Here we describe the RNA degradation pathways against which miR-122 provides protection. Transfected HCV RNA is degraded by both the 5' exonuclease Xrn1 and 3' exonuclease exosome complex, whereas replicating RNA within infected cells is degraded primarily by Xrn1 with no contribution from the exosome. Consistent with this, sequencing of the 5' and 3' ends of RNA degradation intermediates in infected cells confirmed that 5' decay is the primary pathway for HCV RNA degradation. Xrn1 knockdown enhances HCV replication, indicating that Xrn1 decay and the viral replicase compete to set RNA abundance within infected cells. Xrn1 knockdown and miR-122 supplementation have equal, redundant, and nonadditive effects on the rate of viral RNA decay, indicating that miR-122 protects HCV RNA from 5' decay. Nevertheless, Xrn1 knockdown does not rescue replication of a viral mutant defective in miR-122 binding, indicating that miR-122 has additional yet uncharacterized function(s) in the viral life cycle.


Assuntos
Exorribonucleases/metabolismo , Hepacivirus/metabolismo , MicroRNAs/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Viral/metabolismo , Replicação Viral , Sequência de Bases , Linhagem Celular Tumoral , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Células HeLa , Hepacivirus/genética , Humanos , Immunoblotting , Hibridização in Situ Fluorescente , MicroRNAs/genética , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Mutação , Interferência de RNA , Estabilidade de RNA , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
16.
Rinsho Byori ; 64(5): 558-563, 2016 05.
Artigo em Japonês | MEDLINE | ID: mdl-30695368

RESUMO

The urea breath test was developed for the diagnosis of Helicobacter pylori infection. In this test, we measure exhaled ¹³CO2 using POCone developed in Japan, which is an infrared spectrometry photometer. Based on the urea breath test, we subsequently developed the in vitro ¹³C-glucose exhaling test. In this test, ¹³C-glucose is added in the circulation culture medium, and ¹³CO2 generated with a bioartificial liver is measured by the POCone. The quantity of discharged ¹³CO2 reflects the energy-producing ability of the bioartifi- cial liver. Therefore, we can simply and easily observe the viability of a bioartificial liver and the effect of drugs on carbohydrate metabolism in the bioartificial liver in real time. According to the results of a bioartificial liver study, we developed the fasting ¹³C-glucose breath test, which can quickly determine hepatic insu- lin resistance in humans with marked sensitivity. The bioartificial liver study unexpectedly led to the development of a new stable isotope breath test. [Review].


Assuntos
Testes Respiratórios , Glucose/análise , Fígado Artificial , Animais , Testes Respiratórios/instrumentação , Testes Respiratórios/métodos , Isótopos de Carbono , Glucose/química , Glucose/metabolismo , Humanos
17.
Gastroenterology ; 147(2): 453-62.e7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24768676

RESUMO

BACKGROUND & AIMS: All-oral regimens combining different classes of direct-acting antivirals (DAA) are highly effective for treatment of patients with chronic hepatitis C. NS5A inhibitors will likely form a component of future interferon-sparing treatment regimens. However, despite their potential, the detailed mechanism of action of NS5A inhibitors is unclear. To study their mechanisms, we compared their kinetics of antiviral suppression with those of other classes of DAA, using the hepatitis C virus genotype 1a cell culture-infectious virus H77S.3. METHODS: We performed detailed kinetic analyses of specific steps in the hepatitis C virus life cycle using cell cultures incubated with protease inhibitors, polymerase inhibitors, or NS5A inhibitors. Assays were designed to measure active viral RNA synthesis and steady-state RNA abundance, polyprotein synthesis, virion assembly, and infectious virus production. RESULTS: Despite their high potency, NS5A inhibitors were slow to inhibit viral RNA synthesis compared with protease or polymerase inhibitors. By 24 hours after addition of an NS5A inhibitor, polyprotein synthesis was reduced <50%, even at micromolar concentrations. In contrast, inhibition of virus release by NS5A inhibitors was potent and rapid, with onset of inhibition as early as 2 hours. Cells incubated with NS5A inhibitors were rapidly depleted of intracellular infectious virus and RNA-containing hepatitis C virus particles, indicating a block in virus assembly. CONCLUSIONS: DAAs that target NS5A rapidly inhibit intracellular assembly of genotype 1a virions. They also inhibit formation of functional replicase complexes, but have no activity against preformed replicase, thereby resulting in slow shut-off of viral RNA synthesis.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Montagem de Vírus/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Farmacorresistência Viral , Genótipo , Hepacivirus/enzimologia , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Humanos , Cinética , Mutação , Inibidores de Proteases/farmacologia , RNA Viral/biossíntese , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
18.
J Virol ; 88(13): 7199-209, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24719423

RESUMO

UNLABELLED: The 5'-terminal sequence of the hepatitis C virus (HCV) positive-strand RNA genome is essential for viral replication. Critical host factors, including a miR-122/Ago2 complex and poly(rC)-binding protein 2 (PCBP2), associate with this RNA segment. We used a biotinylated RNA pulldown approach to isolate host factors binding to the HCV 5' terminal 47 nucleotides and, in addition to Ago2 and PCBP2, identified several novel proteins, including IGF2BP1, hnRNP L, DHX9, ADAR1, and NF90 (ILF3). PCBP2, IGF2BP1, and hnRNP L bound single-stranded RNA, while DHX9, ADAR1, and NF90 bound a cognate double-stranded RNA bait. PCBP2, IGF2BP1, and hnRNP L binding were blocked by preannealing the single-stranded RNA bait with miR-122, indicating that they bind the RNA in competition with miR-122. However, IGF2BP1 binding was also inhibited by high concentrations of heparin, suggesting that it bound the bait nonspecifically. Among these proteins, small interfering RNA-mediated depletion of hnRNP L and NF90 significantly impaired viral replication and reduced infectious virus yields without substantially affecting HCV internal ribosome entry site-mediated translation. hnRNP L and NF90 were found to associate with HCV RNA in infected cells and to coimmunoprecipitate with NS5A in an RNA-dependent manner. Both also associate with detergent-resistant membranes where viral replication complexes reside. We conclude that hnRNP and NF90 are important host factors for HCV replication, at least in cultured cells, and may be present in the replication complex. IMPORTANCE: Although HCV replication has been intensively studied in many laboratories, many aspects of the viral life cycle remain obscure. Here, we use a novel RNA pulldown strategy coupled with mass spectrometry to identify host cell proteins that interact functionally with regulatory RNA elements located at the extreme 5' end of the positive-strand RNA genome. We identify two, primarily nuclear RNA-binding proteins, hnRNP L and NF90, with previously unrecognized proviral roles in HCV replication. The data presented add to current understanding of the replication cycle of this pathogenic human virus.


Assuntos
Regiões 5' não Traduzidas/genética , Hepacivirus/fisiologia , Hepatite C/virologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/metabolismo , Proteínas do Fator Nuclear 90/metabolismo , RNA Viral/metabolismo , Replicação Viral/fisiologia , Sítios de Ligação , Western Blotting , Células Cultivadas , Genoma Viral , Hepatite C/genética , Hepatite C/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas Grupo L/genética , Humanos , Imunoprecipitação , MicroRNAs/genética , Proteínas do Fator Nuclear 90/antagonistas & inibidores , Proteínas do Fator Nuclear 90/genética , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Viral/química , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
J Virol ; 88(13): 7541-55, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24760886

RESUMO

UNLABELLED: Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) possesses multiple functions in the viral life cycle. NS5A is a phosphoprotein that exists in hyperphosphorylated and basally phosphorylated forms. Although the phosphorylation status of NS5A is considered to have a significant impact on its function, the mechanistic details regulating NS5A phosphorylation, as well as its exact roles in the HCV life cycle, are still poorly understood. In this study, we screened 404 human protein kinases via in vitro binding and phosphorylation assays, followed by RNA interference-mediated gene silencing in an HCV cell culture system. Casein kinase I-α (CKI-α) was identified as an NS5A-associated kinase involved in NS5A hyperphosphorylation and infectious virus production. Subcellular fractionation and immunofluorescence confocal microscopy analyses showed that CKI-α-mediated hyperphosphorylation of NS5A contributes to the recruitment of NS5A to low-density membrane structures around lipid droplets (LDs) and facilitates its interaction with core protein and the viral assembly. Phospho-proteomic analysis of NS5A with or without CKI-α depletion identified peptide fragments that corresponded to the region located within the low-complexity sequence I, which is important for CKI-α-mediated NS5A hyperphosphorylation. This region contains eight serine residues that are highly conserved among HCV isolates, and subsequent mutagenesis analysis demonstrated that serine residues at amino acids 225 and 232 in NS5A (genotype 2a) may be involved in NS5A hyperphosphorylation and hyperphosphorylation-dependent regulation of virion production. These findings provide insight concerning the functional role of NS5A phosphorylation as a regulatory switch that modulates its multiple functions in the HCV life cycle. IMPORTANCE: Mechanisms regulating NS5A phosphorylation and its exact function in the HCV life cycle have not been clearly defined. By using a high-throughput screening system targeting host protein kinases, we identified CKI-α as an NS5A-associated kinase involved in NS5A hyperphosphorylation and the production of infectious virus. Our results suggest that the impact of CKI-α in the HCV life cycle is more profound on virion assembly than viral replication via mediation of NS5A hyperphosphorylation. CKI-α-dependent hyperphosphorylation of NS5A plays a role in recruiting NS5A to low-density membrane structures around LDs and facilitating its interaction with the core for new virus particle formation. By using proteomic approach, we identified the region within the low-complexity sequence I of NS5A that is involved in NS5A hyperphosphorylation and hyperphosphorylation-dependent regulation of infectious virus production. These findings will provide novel mechanistic insights into the roles of NS5A-associated kinases and NS5A phosphorylation in the HCV life cycle.


Assuntos
Caseína Quinase Ialfa/metabolismo , Hepacivirus/fisiologia , Hepatite C/virologia , Proteínas não Estruturais Virais/metabolismo , Vírion/fisiologia , Sequência de Aminoácidos , Western Blotting , Caseína Quinase Ialfa/antagonistas & inibidores , Caseína Quinase Ialfa/genética , Células Cultivadas , Imunofluorescência , Hepatite C/metabolismo , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Fosforilação , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas não Estruturais Virais/genética
20.
Uirusu ; 65(2): 277-286, 2015.
Artigo em Japonês | MEDLINE | ID: mdl-27760927

RESUMO

microRNA-122 (miR-122) is an abundant, liver-specific miRNA that regulates gene expression post-transcriptionally, typically by binding to the 3' untranslated region (UTR) of mRNAs, repressing their translation and mediating their degradation. Hepatitis C virus (HCV) is uniquely dependent on miR-122. Similar to conventional miRNA action, miR-122 recruits Argonaute-2 (AGO2) protein to the 5' UTR of the viral genome. However, in contrast to typical miRNA function, this stabilizes HCV RNA and slows its decay in infected cells. We found that HCV RNA is degraded primarily by the cytoplasmic 5' exonuclease XRN1 and that miR-122 acts to protect the viral RNA from XRN1-mediated 5' exonucleolytic decay. However, HCV replication still requires miR-122 in XRN1-depleted cells, suggesting additional functions. We also showed that miR-122 enhances HCV RNA synthesis by reducing viral genomes engaged in translation while increasing the fraction available for RNA synthesis. In this review, we summarize the recent progress on the regulatory mechanisms of HCV genome replication by miR-122.


Assuntos
Genoma Viral , Hepacivirus/genética , Hepacivirus/fisiologia , MicroRNAs/fisiologia , Replicação Viral/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Proteínas Argonautas/metabolismo , Sítios de Ligação , Exorribonucleases/fisiologia , Genoma Viral/genética , Humanos , MicroRNAs/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , RNA Mensageiro/metabolismo , RNA Viral/biossíntese , RNA Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa