Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Rev Esp Enferm Dig ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832589

RESUMO

The development and implementation of artificial intelligence (AI), particularly deep learning (DL) models, has generated significant interest across various fields of gastroenterology. While research in luminal endoscopy has seen rapid translation to clinical practice with approved AI devices, its potential extends far beyond, offering promising benefits for biliopancreatic endoscopy like optical characterization of strictures during cholangioscopy or detection and classification of pancreatic lesions during diagnostic endoscopic ultrasound (EUS). This narrative review provides an up-to-date of the latest literature and available studies in this field. Serving as a comprehensive guide to the current landscape of AI in biliopancreatic endoscopy, emphasizing technological advancements, main applications, ethical considerations, and future directions for research and clinical implementation.

2.
Medicina (Kaunas) ; 59(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37109748

RESUMO

With modern society well entrenched in the digital area, the use of Artificial Intelligence (AI) to extract useful information from big data has become more commonplace in our daily lives than we perhaps realize. Medical specialties that rely heavily on imaging techniques have become a strong focus for the incorporation of AI tools to aid disease diagnosis and monitoring, yet AI-based tools that can be employed in the clinic are only now beginning to become a reality. However, the potential introduction of these applications raises a number of ethical issues that must be addressed before they can be implemented, among the most important of which are issues related to privacy, data protection, data bias, explainability and responsibility. In this short review, we aim to highlight some of the most important bioethical issues that will have to be addressed if AI solutions are to be successfully incorporated into healthcare protocols, and ideally, before they are put in place. In particular, we contemplate the use of these aids in the field of gastroenterology, focusing particularly on capsule endoscopy and highlighting efforts aimed at resolving the issues associated with their use when available.


Assuntos
Bioética , Endoscopia por Cápsula , Gastroenterologia , Humanos , Inteligência Artificial , Instituições de Assistência Ambulatorial
3.
Medicina (Kaunas) ; 59(1)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36676796

RESUMO

Background and Objectives: Device-assisted enteroscopy (DAE) has a significant role in approaching enteric lesions. Endoscopic observation of ulcers or erosions is frequent and can be associated with many nosological entities, namely Crohn's disease. Although the application of artificial intelligence (AI) is growing exponentially in various imaged-based gastroenterology procedures, there is still a lack of evidence of the AI technical feasibility and clinical applicability of DAE. This study aimed to develop and test a multi-brand convolutional neural network (CNN)-based algorithm for automatically detecting ulcers and erosions in DAE. Materials and Methods: A unicentric retrospective study was conducted for the development of a CNN, based on a total of 250 DAE exams. A total of 6772 images were used, of which 678 were considered ulcers or erosions after double-validation. Data were divided into a training and a validation set, the latter being used for the performance assessment of the model. Our primary outcome measures were sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and an area under the curve precision-recall curve (AUC-PR). Results: Sensitivity, specificity, PPV, and NPV were respectively 88.5%, 99.7%, 96.4%, and 98.9%. The algorithm's accuracy was 98.7%. The AUC-PR was 1.00. The CNN processed 293.6 frames per second, enabling AI live application in a real-life clinical setting in DAE. Conclusion: To the best of our knowledge, this is the first study regarding the automatic multi-brand panendoscopic detection of ulcers and erosions throughout the digestive tract during DAE, overcoming a relevant interoperability challenge. Our results highlight that using a CNN to detect this type of lesion is associated with high overall accuracy. The development of binary CNN for automatically detecting clinically relevant endoscopic findings and assessing endoscopic inflammatory activity are relevant steps toward AI application in digestive endoscopy, particularly for panendoscopic evaluation.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Humanos , Úlcera/diagnóstico , Estudos Retrospectivos , Curva ROC , Endoscopia Gastrointestinal
4.
J Gastroenterol Hepatol ; 37(12): 2282-2288, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181257

RESUMO

BACKGROUND AND AIM: Colon capsule endoscopy (CCE) has become a minimally invasive alternative for conventional colonoscopy. Nevertheless, each CCE exam produces between 50 000 and 100 000 frames, making its analysis time-consuming and prone to errors. Convolutional neural networks (CNNs) are a type of artificial intelligence (AI) architecture with high performance in image analysis. This study aims to develop a CNN model for the identification of colonic ulcers and erosions in CCE images. METHODS: A CNN model was designed using a database of CCE images. A total of 124 CCE exams performed between 2010 and 2020 in two centers were reviewed. For CNN development, a total of 37 319 images were extracted, 33 749 showing normal colonic mucosa and 3570 showing colonic ulcers and erosions. Datasets for CNN training, validation, and testing were created. The performance of the algorithm was evaluated regarding its sensitivity, specificity, positive and negative predictive values, accuracy, and area under the curve. RESULTS: The network had a sensitivity of 96.9% and a specificity of 99.9% specific for the detection of colonic ulcers and erosions. The algorithm had an overall accuracy of 99.6%. The area under the curve was 1.00. The CNN had an image processing capacity of 90 frames per second. CONCLUSIONS: The developed algorithm is the first CNN-based model to accurately detect ulcers and erosions in CCE images, also providing a good image processing performance. The development of these AI systems may contribute to improve both the diagnostic and time efficiency of CCE exams, facilitating CCE adoption to routine clinical practice.


Assuntos
Endoscopia por Cápsula , Humanos , Inteligência Artificial , Redes Neurais de Computação , Colo
5.
Diagnostics (Basel) ; 14(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337807

RESUMO

The role of capsule endoscopy and enteroscopy in managing various small-bowel pathologies is well-established. However, their broader application has been hampered mainly by their lengthy reading times. As a result, there is a growing interest in employing artificial intelligence (AI) in these diagnostic and therapeutic procedures, driven by the prospect of overcoming some major limitations and enhancing healthcare efficiency, while maintaining high accuracy levels. In the past two decades, the applicability of AI to gastroenterology has been increasing, mainly because of the strong imaging component. Nowadays, there are a multitude of studies using AI, specifically using convolutional neural networks, that prove the potential applications of AI to these endoscopic techniques, achieving remarkable results. These findings suggest that there is ample opportunity for AI to expand its presence in the management of gastroenterology diseases and, in the future, catalyze a game-changing transformation in clinical activities. This review provides an overview of the current state-of-the-art of AI in the scope of small-bowel study, with a particular focus on capsule endoscopy and enteroscopy.

6.
Cancers (Basel) ; 16(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38201634

RESUMO

Device-assisted enteroscopy (DAE) is capable of evaluating the entire gastrointestinal tract, identifying multiple lesions. Nevertheless, DAE's diagnostic yield is suboptimal. Convolutional neural networks (CNN) are multi-layer architecture artificial intelligence models suitable for image analysis, but there is a lack of studies about their application in DAE. Our group aimed to develop a multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. In total, 338 exams performed in two specialized centers were retrospectively evaluated, with 152 single-balloon enteroscopies (Fujifilm®, Porto, Portugal), 172 double-balloon enteroscopies (Olympus®, Porto, Portugal) and 14 motorized spiral enteroscopies (Olympus®, Porto, Portugal); then, 40,655 images were divided in a training dataset (90% of the images, n = 36,599) and testing dataset (10% of the images, n = 4066) used to evaluate the model. The CNN's output was compared to an expert consensus classification. The model was evaluated by its sensitivity, specificity, positive (PPV) and negative predictive values (NPV), accuracy and area under the precision recall curve (AUC-PR). The CNN had an 88.9% sensitivity, 98.9% specificity, 95.8% PPV, 97.1% NPV, 96.8% accuracy and an AUC-PR of 0.97. Our group developed the first multidevice CNN for panendoscopic detection of clinically relevant lesions during DAE. The development of accurate deep learning models is of utmost importance for increasing the diagnostic yield of DAE-based panendoscopy.

7.
Endosc Int Open ; 12(4): E570-E578, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38654967

RESUMO

Background and study aims Capsule endoscopy (CE) is commonly used as the initial exam for suspected mid-gastrointestinal bleeding after normal upper and lower endoscopy. Although the assessment of the small bowel is the primary focus of CE, detecting upstream or downstream vascular lesions may also be clinically significant. This study aimed to develop and test a convolutional neural network (CNN)-based model for panendoscopic automatic detection of vascular lesions during CE. Patients and methods A multicentric AI model development study was based on 1022 CE exams. Our group used 34655 frames from seven types of CE devices, of which 11091 were considered to have vascular lesions (angiectasia or varices) after triple validation. We divided data into a training and a validation set, and the latter was used to evaluate the model's performance. At the time of division, all frames from a given patient were assigned to the same dataset. Our primary outcome measures were sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and an area under the precision-recall curve (AUC-PR). Results Sensitivity and specificity were 86.4% and 98.3%, respectively. PPV was 95.2%, while the NPV was 95.0%. Overall accuracy was 95.0%. The AUC-PR value was 0.96. The CNN processed 115 frames per second. Conclusions This is the first proof-of-concept artificial intelligence deep learning model developed for pan-endoscopic automatic detection of vascular lesions during CE. The diagnostic performance of this CNN in multi-brand devices addresses an essential issue of technological interoperability, allowing it to be replicated in multiple technological settings.

8.
J Clin Med ; 13(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38792544

RESUMO

Background/Objectives: Proficient colposcopy is crucial for the adequate management of cervical cancer precursor lesions; nonetheless its limitations may impact its cost-effectiveness. The development of artificial intelligence models is experiencing an exponential growth, particularly in image-based specialties. The aim of this study is to develop and validate a Convolutional Neural Network (CNN) for the automatic differentiation of high-grade (HSIL) from low-grade dysplasia (LSIL) in colposcopy. Methods: A unicentric retrospective study was conducted based on 70 colposcopy exams, comprising a total of 22,693 frames. Among these, 8729 were categorized as HSIL based on histopathology. The total dataset was divided into a training (90%, n = 20,423) and a testing set (10%, n = 2270), the latter being used to evaluate the model's performance. The main outcome measures included sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and the area under the receiving operating curve (AUC-ROC). Results: The sensitivity was 99.7% and the specificity was 98.6%. The PPV and NPV were 97.8% and 99.8%, respectively. The overall accuracy was 99.0%. The AUC-ROC was 0.98. The CNN processed 112 frames per second. Conclusions: We developed a CNN capable of differentiating cervical cancer precursors in colposcopy frames. The high levels of accuracy for the differentiation of HSIL from LSIL may improve the diagnostic yield of this exam.

9.
Therap Adv Gastroenterol ; 17: 17562848241251569, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812708

RESUMO

Background: Capsule endoscopy (CE) is a valuable tool for assessing inflammation in patients with Crohn's disease (CD). The current standard for evaluating inflammation are validated scores (and clinical laboratory values) like Lewis score (LS), Capsule Endoscopy Crohn's Disease Activity Index (CECDAI), and ELIAKIM. Recent advances in artificial intelligence (AI) have made it possible to automatically select the most relevant frames in CE. Objectives: In this proof-of-concept study, our objective was to develop an automated scoring system using CE images to objectively grade inflammation. Design: Pan-enteric CE videos (PillCam Crohn's) performed in CD patients between 09/2020 and 01/2023 were retrospectively reviewed and LS, CECDAI, and ELIAKIM scores were calculated. Methods: We developed a convolutional neural network-based automated score consisting of the percentage of positive frames selected by the algorithm (for small bowel and colon separately). We correlated clinical data and the validated scores with the artificial intelligence-generated score (AIS). Results: A total of 61 patients were included. The median LS was 225 (0-6006), CECDAI was 6 (0-33), ELIAKIM was 4 (0-38), and SB_AIS was 0.5659 (0-29.45). We found a strong correlation between SB_AIS and LS, CECDAI, and ELIAKIM scores (Spearman's r = 0.751, r = 0.707, r = 0.655, p = 0.001). We found a strong correlation between LS and ELIAKIM (r = 0.768, p = 0.001) and a very strong correlation between CECDAI and LS (r = 0.854, p = 0.001) and CECDAI and ELIAKIM scores (r = 0.827, p = 0.001). Conclusion: Our study showed that the AI-generated score had a strong correlation with validated scores indicating that it could serve as an objective and efficient method for evaluating inflammation in CD patients. As a preliminary study, our findings provide a promising basis for future refining of a CE score that may accurately correlate with prognostic factors and aid in the management and treatment of CD patients.


Artificial intelligence in Crohn's disease: the development of an automated score for disease activity evaluation This study introduces an innovative AI-based approach to evaluate Crohn's Disease. The AI system automatically analyzes images from capsule endoscopy, focusing on finding ulcers and erosions to measure disease activity. The research reveals a robust correlation between the AI-generated score assessing inflammation in the small bowel and traditional clinical scores. This suggests that the AI solution could be a quicker and more consistent way to evaluate Crohn's Disease, speeding up the evaluation process and reducing manual scoring variability. While promising, the study acknowledges limitations and emphasizes the need for further validation with larger groups of patients. Overall, it represents a crucial step toward integrating AI into gastroenterology, offering a glimpse into a future of more objective and personalized Crohn's Disease evaluation.

10.
Ann Coloproctol ; 39(3): 280-282, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34256425

RESUMO

Cavernous hemangiomas of the colon are rare, benign vascular lesions, and the site most commonly affected is the rectosigmoid junction. Surgical treatment is recommended for large diffuse lesions but in the presence of pedunculated lesions, endoscopic resection should be preferred if possible. We report a case of a 65-year-old man referred for colonoscopy after positive fecal occult blood, that revealed at the level of the sigmoid colon, a wide base pedunculated polyp (35 mm) occupying more than half of the lumen, with the covering mucosa with a vinous appearance. In order to remove the lesion, a detachable snare was placed and polypectomy was performed. During the procedure, the detachable snare was cut with active bleeding, controlled after clip placement and diluted adrenaline injection. Afterwards, histology revealed a polypoid lesion with a hyperplastic mucosa and submucosal plane expanded by numerous thick-walled vessels in the context of a cavernous colonic hemangioma.

11.
Diagnostics (Basel) ; 13(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132209

RESUMO

The surge in the implementation of artificial intelligence (AI) in recent years has permeated many aspects of our life, and health care is no exception. Whereas this technology can offer clear benefits, some of the problems associated with its use have also been recognised and brought into question, for example, its environmental impact. In a similar fashion, health care also has a significant environmental impact, and it requires a considerable source of greenhouse gases. Whereas efforts are being made to reduce the footprint of AI tools, here, we were specifically interested in how employing AI tools in gastroenterology departments, and in particular in conjunction with capsule endoscopy, can reduce the carbon footprint associated with digestive health care while offering improvements, particularly in terms of diagnostic accuracy. We address the different ways that leveraging AI applications can reduce the carbon footprint associated with all types of capsule endoscopy examinations. Moreover, we contemplate how the incorporation of other technologies, such as blockchain technology, into digestive health care can help ensure the sustainability of this clinical speciality and by extension, health care in general.

12.
Clin Transl Gastroenterol ; 14(10): e00609, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37404050

RESUMO

INTRODUCTION: Capsule endoscopy (CE) is a minimally invasive examination for evaluating the gastrointestinal tract. However, its diagnostic yield for detecting gastric lesions is suboptimal. Convolutional neural networks (CNNs) are artificial intelligence models with great performance for image analysis. Nonetheless, their role in gastric evaluation by wireless CE (WCE) has not been explored. METHODS: Our group developed a CNN-based algorithm for the automatic classification of pleomorphic gastric lesions, including vascular lesions (angiectasia, varices, and red spots), protruding lesions, ulcers, and erosions. A total of 12,918 gastric images from 3 different CE devices (PillCam Crohn's; PillCam SB3; OMOM HD CE system) were used from the construction of the CNN: 1,407 from protruding lesions; 994 from ulcers and erosions; 822 from vascular lesions; and 2,851 from hematic residues and the remaining images from normal mucosa. The images were divided into a training (split for three-fold cross-validation) and validation data set. The model's output was compared with a consensus classification by 2 WCE-experienced gastroenterologists. The network's performance was evaluated by its sensitivity, specificity, accuracy, positive predictive value and negative predictive value, and area under the precision-recall curve. RESULTS: The trained CNN had a 97.4% sensitivity; 95.9% specificity; and positive predictive value and negative predictive value of 95.0% and 97.8%, respectively, for gastric lesions, with 96.6% overall accuracy. The CNN had an image processing time of 115 images per second. DISCUSSION: Our group developed, for the first time, a CNN capable of automatically detecting pleomorphic gastric lesions in both small bowel and colon CE devices.


Assuntos
Endoscopia por Cápsula , Aprendizado Profundo , Humanos , Endoscopia por Cápsula/métodos , Inteligência Artificial , Úlcera , Redes Neurais de Computação
13.
Cancers (Basel) ; 15(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136403

RESUMO

In the early 2000s, the introduction of single-camera wireless capsule endoscopy (CE) redefined small bowel study. Progress continued with the development of double-camera devices, first for the colon and rectum, and then, for panenteric assessment. Advancements continued with magnetic capsule endoscopy (MCE), particularly when assisted by a robotic arm, designed to enhance gastric evaluation. Indeed, as CE provides full visualization of the entire gastrointestinal (GI) tract, a minimally invasive capsule panendoscopy (CPE) could be a feasible alternative, despite its time-consuming nature and learning curve, assuming appropriate bowel cleansing has been carried out. Recent progress in artificial intelligence (AI), particularly in the development of convolutional neural networks (CNN) for CE auxiliary reading (detecting and diagnosing), may provide the missing link in fulfilling the goal of establishing the use of panendoscopy, although prospective studies are still needed to validate these models in actual clinical scenarios. Recent CE advancements will be discussed, focusing on the current evidence on CNN developments, and their real-life implementation potential and associated ethical challenges.

14.
Diagnostics (Basel) ; 12(6)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35741255

RESUMO

BACKGROUND: Colon capsule endoscopy (CCE) is an alternative for patients unwilling or with contraindications for conventional colonoscopy. Colorectal cancer screening may benefit greatly from widespread acceptance of a non-invasive tool such as CCE. However, reviewing CCE exams is a time-consuming process, with risk of overlooking important lesions. We aimed to develop an artificial intelligence (AI) algorithm using a convolutional neural network (CNN) architecture for automatic detection of colonic protruding lesions in CCE images. An anonymized database of CCE images collected from a total of 124 patients was used. This database included images of patients with colonic protruding lesions or patients with normal colonic mucosa or with other pathologic findings. A total of 5715 images were extracted for CNN development. Two image datasets were created and used for training and validation of the CNN. The AUROC for detection of protruding lesions was 0.99. The sensitivity, specificity, PPV and NPV were 90.0%, 99.1%, 98.6% and 93.2%, respectively. The overall accuracy of the network was 95.3%. The developed deep learning algorithm accurately detected protruding lesions in CCE images. The introduction of AI technology to CCE may increase its diagnostic accuracy and acceptance for screening of colorectal neoplasia.

15.
Ecol Evol ; 12(4): e8811, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35414898

RESUMO

Evaluating species responses to anthropogenic infrastructures and other habitat changes is often used to assess environmental impacts and to guide conservation actions. However, such studies are generally carried out at the population level, disregarding inter-individual variability. Here, we investigate population- and individual-level responses toward power lines of a territorial raptor, the Bonelli's eagle Aquila fasciata. We used GPS-PTT tracking data of 17 adult eagles to model space use as a function of distance to transmission and distribution lines, while accounting for other habitat features known to affect this species. At population level, eagles increased the intensity of space use in the proximity of power lines (up to 1,000 m), suggesting an attraction effect. At individual level, some eagles shared the general population attraction pattern, while others showed reduced intensity of space use in the proximity of power lines. These differential responses were unrelated to the sex of individuals, but were affected by the characteristics of the power grid, with a tendency for apparent attraction to be associated with individuals occupying home ranges with a denser network of transmission lines and transmission pylons. However, the study could not rule out the operation of other potentially influential factors, such as individual idiosyncrasies, the spatial distribution of prey availability, and the availability of natural perches and nesting sites. Overall, these results suggest that power lines may drive different behaviors and have differential impacts across individuals, with those attracted to the proximity of power lines potentially facing increased risk of mortality through electrocution and collision, and those avoiding power lines being potentially subject to exclusion effects. More generally, our results reinforce the need to understand individual variability when assessing and mitigating impacts of anthropogenic infrastructures.

16.
Endosc Int Open ; 10(2): E171-E177, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35186665

RESUMO

Background and study aims Colon capsule endoscopy (CCE) is a minimally invasive alternative to conventional colonoscopy. However, CCE produces long videos, making its analysis time-consuming and prone to errors. Convolutional neural networks (CNN) are artificial intelligence (AI) algorithms with high performance levels in image analysis. We aimed to develop a deep learning model for automatic identification and differentiation of significant colonic mucosal lesions and blood in CCE images. Patients and methods A retrospective multicenter study including 124 CCE examinations was conducted for development of a CNN model, using a database of CCE images including anonymized images of patients with normal colon mucosa, several mucosal lesions (erosions, ulcers, vascular lesions and protruding lesions) and luminal blood. For CNN development, 9005 images (3,075 normal mucosa, 3,115 blood and 2,815 mucosal lesions) were ultimately extracted. Two image datasets were created and used for CNN training and validation. Results The mean (standard deviation) sensitivity and specificity of the CNN were 96.3 % (3.9 %) and 98.2 % (1.8 %) Mucosal lesions were detected with a sensitivity of 92.0 % and a specificity of 98.5 %. Blood was detected with a sensitivity and specificity of 97.2 % and 99.9 %, respectively. The algorithm was 99.2 % sensitive and 99.6 % specific in distinguishing blood from mucosal lesions. The CNN processed 65 frames per second. Conclusions This is the first CNN-based algorithm to accurately detect and distinguish colonic mucosal lesions and luminal blood in CCE images. AI may improve diagnostic and time efficiency of CCE exams, thus facilitating CCE adoption to routine clinical practice.

17.
Endosc Int Open ; 10(3): E262-E268, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35295246

RESUMO

Background and study aims Indeterminate biliary strictures pose a significative clinical challenge. Dilated, irregular, and tortuous vessels, often described as tumor vessels, are frequently reported in biliary strictures with high malignancy potential during digital single-operator cholangioscopy (D-SOC). In recent years, the development of artificial intelligence (AI) algorithms for application to endoscopic practice has been intensely studied. We aimed to develop an AI algorithm for automatic detection of tumor vessels (TVs) in D-SOC images. Patients and methods A convolutional neural network (CNN) was developed. A total of 6475 images from 85 patients who underwent D-SOC (Spyglass, Boston Scientific, Marlborough, Massachusetts, United States) were included. Each frame was evaluated for the presence of TVs. The performance of the CNN was measured by calculating the area under the curve (AUC), sensitivity, specificity, positive and negative predictive values. Results The sensitivity, specificity, positive predictive value, and negative predictive value were 99.3 %, 99.4 %, 99.6% and 98.7 %, respectively. The AUC was 1.00. Conclusions Our CNN was able to detect TVs with high accuracy. Development of AI algorithms may enhance the detection of macroscopic characteristics associated with high probability of biliary malignancy, thus optimizing the diagnostic workup of patients with indeterminate biliary strictures.

18.
Therap Adv Gastroenterol ; 15: 17562848221132683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338789

RESUMO

Background: Artificial intelligence (AI) is rapidly infiltrating multiple areas in medicine, with gastrointestinal endoscopy paving the way in both research and clinical applications. Multiple challenges associated with the incorporation of AI in endoscopy are being addressed in recent consensus documents. Objectives: In the current paper, we aimed to map future challenges and areas of research for the incorporation of AI in capsule endoscopy (CE) practice. Design: Modified three-round Delphi consensus online survey. Methods: The study design was based on a modified three-round Delphi consensus online survey distributed to a group of CE and AI experts. Round one aimed to map out key research statements and challenges for the implementation of AI in CE. All queries addressing the same questions were merged into a single issue. The second round aimed to rank all generated questions during round one and to identify the top-ranked statements with the highest total score. Finally, the third round aimed to redistribute and rescore the top-ranked statements. Results: Twenty-one (16 gastroenterologists and 5 data scientists) experts participated in the survey. In the first round, 48 statements divided into seven themes were generated. After scoring all statements and rescoring the top 12, the question of AI use for identification and grading of small bowel pathologies was scored the highest (mean score 9.15), correlation of AI and human expert reading-second (9.05), and real-life feasibility-third (9.0). Conclusion: In summary, our current study points out a roadmap for future challenges and research areas on our way to fully incorporating AI in CE reading.

19.
Ann Gastroenterol ; 34(3): 300-309, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33948053

RESUMO

The applicability of artificial intelligence (AI) in gastroenterology is a hot topic because of its disruptive nature. Capsule endoscopy plays an important role in several areas of digestive pathology, namely in the investigation of obscure hemorrhagic lesions and the management of inflammatory bowel disease. Therefore, there is growing interest in the use of AI in capsule endoscopy. Several studies have demonstrated the enormous potential of using convolutional neural networks in various areas of capsule endoscopy. The exponential development of the usefulness of AI in capsule endoscopy requires consideration of its medium- and long-term impact on clinical practice. Indeed, the advent of deep learning in the field of capsule endoscopy, with its evolutionary character, could lead to a paradigm shift in clinical activity in this setting. In this review, we aim to illustrate the state of the art of AI in the field of capsule endoscopy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa