Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Radiology ; 306(1): 112-121, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36098639

RESUMO

Background Patients with mitral valve prolapse (MVP) may develop adverse outcomes even in the absence of mitral regurgitation or left ventricular (LV) dysfunction. Purpose To investigate the prognostic value of mitral annulus disjunction (MAD) and myocardial fibrosis at late gadolinium enhancement (LGE) cardiac MRI in patients with MVP without moderate-to-severe mitral regurgitation or LV dysfunction. Materials and Methods In this longitudinal retrospective study, 118 144 cardiac MRI studies were evaluated between October 2007 and June 2020 at 15 European tertiary medical centers. Follow-up was from the date of cardiac MRI examination to June 2020; the minimum and maximum follow-up intervals were 6 months and 156 months, respectively. Patients were excluded if at least one of the following conditions was present: cardiomyopathy, LV ejection fraction less than 40%, ischemic heart disease, congenital heart disease, inflammatory heart disease, moderate or worse mitral regurgitation, participation in competitive sport, or electrocardiogram suggestive of channelopathies. In the remainder, cardiac MRI studies were reanalyzed, and patients were included if they were aged 18 years or older, MVP was diagnosed at cardiac MRI, and clinical information and electrocardiogram monitoring were available within 3 months from cardiac MRI examination. The end point was a composite of adverse outcomes: sustained ventricular tachycardia (VT), sudden cardiac death (SCD), or unexplained syncope. Multivariable Cox regression analysis was performed. Results A total of 474 patients (mean age, 47 years ± 16 [SD]; 244 women) were included. Over a median follow-up of 3.3 years, 18 patients (4%) reached the study end point. LGE presence (hazard ratio, 4.2 [95% CI: 1.5, 11.9]; P = .006) and extent (hazard ratio, 1.2 per 1% increase [95% CI: 1.1, 1.4]; P = .006), but not MAD presence (P = .89), were associated with clinical outcome. LGE presence had incremental prognostic value over MVP severity and sustained VT and aborted SCD at baseline (area under the receiver operating characteristic curve, 0.70 vs 0.62; P = .03). Conclusion In contrast to mitral annulus disjunction, myocardial fibrosis determined according to late gadolinium enhancement at cardiac MRI was associated with adverse outcome in patients with mitral valve prolapse without moderate-to-severe mitral regurgitation or left ventricular dysfunction. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Gerber in this issue.


Assuntos
Cardiomiopatias , Insuficiência da Valva Mitral , Prolapso da Valva Mitral , Disfunção Ventricular Esquerda , Humanos , Feminino , Pessoa de Meia-Idade , Prolapso da Valva Mitral/complicações , Estudos Retrospectivos , Meios de Contraste , Gadolínio , Valva Mitral , Imageamento por Ressonância Magnética , Fibrose , Morte Súbita Cardíaca
2.
J Cardiovasc Magn Reson ; 24(1): 48, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35978351

RESUMO

Quantitative susceptibility mapping (QSM) is a powerful, non-invasive, magnetic resonance imaging (MRI) technique that relies on measurement of magnetic susceptibility. So far, QSM has been employed mostly to study neurological disorders characterized by iron accumulation, such as Parkinson's and Alzheimer's diseases. Nonetheless, QSM allows mapping key indicators of cardiac disease such as blood oxygenation and myocardial iron content. For this reason, the application of QSM offers an unprecedented opportunity to gain a better understanding of the pathophysiological changes associated with cardiovascular disease and to monitor their evolution and response to treatment. Recent studies on cardiovascular QSM have shown the feasibility of a non-invasive assessment of blood oxygenation, myocardial iron content and myocardial fibre orientation, as well as carotid plaque composition. Significant technical challenges remain, the most evident of which are related to cardiac and respiratory motion, blood flow, chemical shift effects and susceptibility artefacts. Significant work is ongoing to overcome these challenges and integrate the QSM technique into clinical practice in the cardiovascular field.


Assuntos
Ferro , Imageamento por Ressonância Magnética , Encéfalo , Coração , Humanos , Imageamento por Ressonância Magnética/métodos , Valor Preditivo dos Testes
3.
J Magn Reson Imaging ; 53(4): 1253-1265, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33124081

RESUMO

BACKGROUND: Dixon cardiac magnetic resonance fingerprinting (MRF) has been recently introduced to simultaneously provide water T1 , water T2 , and fat fraction (FF) maps. PURPOSE: To assess Dixon cardiac MRF repeatability in healthy subjects and its clinical feasibility in a cohort of patients with cardiovascular disease. POPULATION: T1MES phantom, water-fat phantom, 11 healthy subjects and 19 patients with suspected cardiovascular disease. STUDY TYPE: Prospective. FIELD STRENGTH/SEQUENCE: 1.5T, inversion recovery spin echo (IRSE), multiecho spin echo (MESE), modified Look-Locker inversion recovery (MOLLI), T2 gradient spin echo (T2 -GRASE), 6-echo gradient rewound echo (GRE), and Dixon cardiac MRF. ASSESSMENT: Dixon cardiac MRF precision was assessed through repeated scans against conventional MOLLI, T2 -GRASE, and PDFF in phantom and 11 healthy subjects. Dixon cardiac MRF native T1 , T2 , FF, postcontrast T1 and synthetic extracellular volume (ECV) maps were assessed in 19 patients in comparison to conventional sequences. Measurements in patients were performed in the septum and in late gadolinium enhanced (LGE) areas and assessed using mean value distributions, correlation, and Bland-Altman plots. Image quality and diagnostic confidence were assessed by three experts using 5-point scoring scales. STATISTICAL TESTS: Paired Wilcoxon rank signed test and paired t-tests were applied. Statistical significance was indicated by *(P < 0.05). RESULTS: Dixon cardiac MRF showed good overall precision in phantom and in vivo. Septal average repeatability was ~23 msec for T1 , ~2.2 msec for T2 , and ~1% for FF. Biases in healthy subjects/patients were measured at +37 msec*/+60 msec* and -8.8 msec*/-8 msec* when compared to MOLLI and T2 -GRASE, respectively. No statistically significant differences in postcontrast T1 (P = 0.17) and synthetic ECV (P = 0.19) measurements were observed in patients. DATA CONCLUSION: Dixon cardiac MRF attained good overall precision in phantom and healthy subjects, while providing coregistered T1 , T2 , and fat fraction maps in a single breath-hold scan with similar or better image quality than conventional methods in patients. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 2.


Assuntos
Coração , Imageamento por Ressonância Magnética , Coração/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos Testes
4.
MAGMA ; 34(6): 877-887, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34165670

RESUMO

OBJECTIVE: 3D late gadolinium enhancement (LGE) imaging is a promising non-invasive technique for the assessment of atrial fibrosis. However, current techniques result in prolonged and unpredictable scan times and high rates of non-diagnostic images. The purpose of this study was to compare the performance of a recently proposed accelerated respiratory motion-compensated 3D water/fat LGE technique with conventional 3D LGE for atrial wall imaging. MATERIALS AND METHODS: 18 patients (age: 55.7±17.1 years) with atrial fibrillation underwent conventional diaphragmatic navigator gated inversion recovery (IR)-prepared 3D LGE (dNAV) and proposed image-navigator motion-corrected water/fat IR-prepared 3D LGE (iNAV) imaging. Images were assessed for image quality and presence of fibrosis by three expert observers. The scan time for both techniques was recorded. RESULTS: Image quality scores were improved with the proposed compared to the conventional method (iNAV: 3.1 ± 1.0 vs. dNAV: 2.6 ± 1.0, p = 0.0012, with 1: Non-diagnostic to 4: Full diagnostic). Furthermore, scan time for the proposed method was significantly shorter with a 59% reduction is scan time (4.5 ± 1.2 min vs. 10.9 ± 3.9 min, p < 0.0001). The images acquired with the proposed method were deemed as inconclusive less frequently than the conventional images (expert 1/expert 2: 4/7 dNAV and 2/4 iNAV images inconclusive). DISCUSSION: The motion-compensated water/fat LGE method enables atrial wall imaging with diagnostic quality comparable to the current conventional approach with a significantly shorter scan of about 5 min.


Assuntos
Meios de Contraste , Gadolínio , Adulto , Idoso , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Água
5.
Magn Reson Med ; 84(5): 2625-2635, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32406125

RESUMO

PURPOSE: Quantitative T1 , T2 , T2 *, and fat fraction (FF) maps are promising imaging biomarkers for the assessment of liver disease, however these are usually acquired in sequential scans. Here we propose an extended MR fingerprinting (MRF) framework enabling simultaneous liver T1 , T2 , T2 *, and FF mapping from a single ~14 s breath-hold scan. METHODS: A gradient echo (GRE) liver MRF sequence with nine readouts per TR, low flip angles (5-15°), varying magnetisation preparation and golden angle radial trajectory is acquired at 1.5T to encode T1 , T2 , T2 *, and FF simultaneously. The nine-echo time-series are reconstructed using a low-rank tensor constrained reconstruction and used to fit T2 *, B0 and to separate the water and fat signals. Water- and fat-specific T1 , T2, and M0 are obtained through dictionary matching, whereas FF estimation is extracted from the M0 maps. The framework was evaluated in a standardized T1 /T2 phantom, a water-fat phantom, and 12 subjects in comparison to reference methods. Preliminary clinical feasibility is shown in four patients. RESULTS: The proposed water T1 , water T2 , T2 *, and FF maps in phantoms showed high coefficients of determination (r2 > 0.97) relative to reference methods. Measured liver MRF values in vivo (mean ± SD) for T1 , T2 , T2 *, and FF were 671 ± 60 ms, 43.2 ± 6.8 ms, 29 ± 6.6 ms, and 3.2 ± 2.6% with biases of 92 ms, -7.1 ms, -1.4 ms, and 0.63% when compared to conventional methods. CONCLUSION: A nine-echo liver MRF sequence allows for quantitative multi-parametric liver tissue characterization in a single breath-hold scan of ~14 s. Future work will aim to validate the proposed approach in patients with liver disease.


Assuntos
Suspensão da Respiração , Imageamento por Ressonância Magnética , Humanos , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Reprodutibilidade dos Testes
6.
J Cardiovasc Magn Reson ; 22(1): 60, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32814579

RESUMO

BACKGROUND: Tissue characterisation with cardiovascular magnetic resonance (CMR) parametric mapping has the potential to detect and quantify both focal and diffuse alterations in myocardial structure not assessable by late gadolinium enhancement. Native T1 mapping in particular has shown promise as a useful biomarker to support diagnostic, therapeutic and prognostic decision-making in ischaemic and non-ischaemic cardiomyopathies. METHODS: Convolutional neural networks (CNNs) with Bayesian inference are a category of artificial neural networks which model the uncertainty of the network output. This study presents an automated framework for tissue characterisation from native shortened modified Look-Locker inversion recovery ShMOLLI T1 mapping at 1.5 T using a Probabilistic Hierarchical Segmentation (PHiSeg) network (PHCUMIS 119-127, 2019). In addition, we use the uncertainty information provided by the PHiSeg network in a novel automated quality control (QC) step to identify uncertain T1 values. The PHiSeg network and QC were validated against manual analysis on a cohort of the UK Biobank containing healthy subjects and chronic cardiomyopathy patients (N=100 for the PHiSeg network and N=700 for the QC). We used the proposed method to obtain reference T1 ranges for the left ventricular (LV) myocardium in healthy subjects as well as common clinical cardiac conditions. RESULTS: T1 values computed from automatic and manual segmentations were highly correlated (r=0.97). Bland-Altman analysis showed good agreement between the automated and manual measurements. The average Dice metric was 0.84 for the LV myocardium. The sensitivity of detection of erroneous outputs was 91%. Finally, T1 values were automatically derived from 11,882 CMR exams from the UK Biobank. For the healthy cohort, the mean (SD) corrected T1 values were 926.61 (45.26), 934.39 (43.25) and 927.56 (50.36) for global, interventricular septum and free-wall respectively. CONCLUSIONS: The proposed pipeline allows for automatic analysis of myocardial native T1 mapping and includes a QC process to detect potentially erroneous results. T1 reference values were presented for healthy subjects and common clinical cardiac conditions from the largest cohort to date using T1-mapping images.


Assuntos
Cardiomiopatias/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Miocárdio/patologia , Redes Neurais de Computação , Automação , Teorema de Bayes , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Estudos de Casos e Controles , Humanos , Valor Preditivo dos Testes , Controle de Qualidade , Reprodutibilidade dos Testes , Volume Sistólico , Incerteza , Função Ventricular Esquerda
7.
J Cardiovasc Magn Reson ; 22(1): 53, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32684167

RESUMO

BACKGROUND: Conventional 2D inversion recovery (IR) and phase sensitive inversion recovery (PSIR) late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) have been widely incorporated into routine CMR for the assessment of myocardial viability. However, reliable suppression of fat signal, and increased isotropic spatial resolution and volumetric coverage within a clinically feasible scan time remain a challenge. In order to address these challenges, this work proposes a highly efficient respiratory motion-corrected 3D whole-heart water/fat LGE imaging framework. METHODS: An accelerated IR-prepared 3D dual-echo acquisition and motion-corrected reconstruction framework for whole-heart water/fat LGE imaging was developed. The acquisition sequence includes 2D image navigators (iNAV), which are used to track the respiratory motion of the heart and enable 100% scan efficiency. Non-rigid motion information estimated from the 2D iNAVs and from the data itself is integrated into a high-dimensional patch-based undersampled reconstruction technique (HD-PROST), to produce high-resolution water/fat 3D LGE images. A cohort of 20 patients with known or suspected cardiovascular disease was scanned with the proposed 3D water/fat LGE approach. 3D water LGE images were compared to conventional breath-held 2D LGE images (2-chamber, 4-chamber and stack of short-axis views) in terms of image quality (1: full diagnostic to 4: non-diagnostic) and presence of LGE findings. RESULTS: Image quality was considered diagnostic in 18/20 datasets for both 2D and 3D LGE magnitude images, with comparable image quality scores (2D: 2.05 ± 0.72, 3D: 1.88 ± 0.90, p-value = 0.62) and overall agreement in LGE findings. Acquisition time for isotropic high-resolution (1.3mm3) water/fat LGE images was 8.0 ± 1.4 min (3-fold acceleration, 60-88 slices covering the whole heart), while 2D LGE images were acquired in 5.6 ± 2.2 min (12-18 slices, including pauses between breath-holds) albeit with a lower spatial resolution (1.40-1.75 mm in-plane × 8 mm slice thickness). CONCLUSION: A novel framework for motion-corrected whole-heart 3D water/fat LGE imaging has been introduced. The method was validated in patients with known or suspected cardiovascular disease, showing good agreement with conventional breath-held 2D LGE imaging, but offering higher spatial resolution, improved volumetric coverage and good image quality from a free-breathing acquisition with 100% scan efficiency and predictable scan time.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Adiposidade , Água Corporal/química , Doenças Cardiovasculares/diagnóstico por imagem , Meios de Contraste/administração & dosagem , Coração/diagnóstico por imagem , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Compostos Organometálicos/administração & dosagem , Tecido Adiposo/fisiopatologia , Adulto , Idoso , Suspensão da Respiração , Técnicas de Imagem de Sincronização Cardíaca , Doenças Cardiovasculares/fisiopatologia , Eletrocardiografia , Feminino , Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
8.
Curr Cardiol Rep ; 22(8): 72, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32577917

RESUMO

PURPOSE OF REVIEW: This review summarizes the evidence for the established vascular/hypoperfusion model and explores the new hypothesis that configures the heart/brain axis as an organ system where similar pathogenic mechanisms exploit physiological and pathological changes. RECENT FINDINGS: Although associated by common risk factors, similar epidemiological stratification and common triggers (including inflammation, oxidative stress, and hypoxia), heart failure and Alzheimer's disease have been, for long time, viewed as pathogenically separate illnesses. The silos began to be broken down with the awareness that vascular dysfunction, and loss of cardiac perfusion pump power, trigger biochemical changes, contributing to the typical hallmark of Alzheimer's disease (AD)-the accumulation of Aß plaques and hyperphosphorylated Tau tangles. Compromised blood flow to the brain becomes the paradigm for the "heart-to-head" connection. Compelling evidence of common genetic variants, biochemical characteristics, and the accumulation of Aß outside the brain suggests a common pathogenesis for heart failure (HF) and AD. These new findings represent just the beginning of the understanding the complex connection between AD and HF requiring further studies and interdisciplinary approaches. Altogether, the current evidence briefly summarized in this review, highlight a closer and complex relationship between heart failure and Alzheimer's that goes beyond the vascular/perfusion hypothesis. Genetic and biochemical evidence begin to suggest common pathogenic mechanisms between the two diseases involving a systemic defect in the folding of protein or a seeding at distance of the misfolded proteins from one organ to the other.


Assuntos
Doença de Alzheimer , Disfunção Ventricular Esquerda , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Coração , Humanos
10.
J Cardiovasc Magn Reson ; 20(1): 50, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30037343

RESUMO

BACKGROUND: To investigate the influence of cardiovascular magnetic resonance (CMR) timing after reperfusion on CMR-derived parameters of ischemia/reperfusion (I/R) injury in patients with ST-segment elevation myocardial infarction (STEMI). METHODS: The study included 163 reperfused STEMI patients undergoing CMR during the index hospitalization. Patients were divided according to the time between revascularization and CMR (Trevasc-CMR: Tertile-1 ≤ 43; 43 < Tertile-2 ≤ 93; Tertile-3 > 93 h). T2-mapping derived area-at-risk (AAR) and intramyocardial-hemorrhage (IMH), and late gadolinium enhancement (LGE)-derived infarct size (IS) and microvascular obstruction (MVO) were quantified. T1-mapping was performed before and > 15 min after Gd-based contrast-agent administration yielding extracellular volume (ECV) of infarct. RESULTS: Main factors influencing I/R injury were homogenously balanced across Trevasc-CMR tertiles. T2 values of infarct and remote regions increased with increasing Trevasc-CMR tertiles (infarct: 60.0 ± 4.9 vs 63.5 ± 5.6 vs 64.8 ± 7.5 ms; P < 0.001; remote: 44.3 ± 2.8 vs 46.1 ± 2.8 vs ± 46.1 ± 3.0; P = 0.001). However, T2 value of infarct largely and significantly exceeded that of remote myocardium in each tertile yielding comparable T2-mapping-derived AAR extent throughout Trevasc-CMR tertiles (17 ± 9% vs 19 ± 9% vs 18 ± 8% of LV, respectively, P = 0.385). Similarly, T2-mapping-based IMH detection and quantification were independent of Trevasc-CMR. LGE-derived IS and MVO were not influenced by Trevasc-CMR (IS: 12 ± 9% vs 12 ± 9% vs 14 ± 9% of LV, respectively, P = 0.646). In 68 patients without MVO, T1-mapping based ECV of infarct region was comparable across Trevasc-CMR tertiles (P = 0.470). CONCLUSION: In STEMI patients, T2 values of infarct and remote myocardium increase with increasing CMR time after revascularization. However, these changes do not give rise to substantial variation of T2-mapping-derived AAR size nor of other CMR-based parameters of I/R. TRIAL REGISTRATION: ISRCTN03522116 . Registered 30.4.2018 (retrospectively registered).


Assuntos
Edema Cardíaco/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Reperfusão Miocárdica/efeitos adversos , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Adulto , Idoso , Meios de Contraste/administração & dosagem , Edema Cardíaco/etiologia , Edema Cardíaco/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Compostos Organometálicos/administração & dosagem , Valor Preditivo dos Testes , Sistema de Registros , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
11.
Rev Med Suisse ; 14(608): 1062-1069, 2018 May 23.
Artigo em Francês | MEDLINE | ID: mdl-29797851

RESUMO

Myocardial fibrosis often develops in the setting of hypertrophic and dilated cardiomyopathies (CMP), but is also a common sequela after inflammatory CMP or following an acute myocardial infarction in patients with coronary artery disease. Cardiac magnetic resonance (CMR) provides a precise quantification of mass and spatial distribution of myocardial fibrosis by the so-called « late-gadolinium-enhancement ¼ (LGE) technique and current evidence is provided in this article linking fibrosis mass to outcome in these specific patient populations. The position of CMR fibrosis imaging in the current guidelines is discussed and suggestions are given how to integrate CMR fibrosis imaging in the work-up and risk stratification of these patient populations. Finally, a short outlook is given on anticipated developments on CMR fibrosis imaging and its integration into patient management.


La fibrose myocardique se développe fréquemment dans le contexte des cardiomyopathies hypertrophiques ou dilatatives, mais elle représente également une séquelle fréquente des cardiopathies inflammatoires ou de l'infarctus myocardique. L'IRM cardiaque permet la quantification précise de la masse fibrotique et de sa distribution spatiale par le « rehaussement tardif ¼. Cet article présente les données soutenant la relation entre la fibrose myocardique et le pronostic dans ces populations spécifiques. La place de l'imagerie de la fibrose par IRM dans les guidelines actuelles est discutée, de même que des suggestions d'intégration de la détection de fibrose par IRM cardiaque dans le bilan de ces patients. Enfin, les développements en cours dans le domaine de la fibrose en IRM sont brièvement évoqués, de même que leur potentielle intégration dans la prise en charge du patient.

12.
Rev Med Suisse ; 14(600): 705-711, 2018 Mar 28.
Artigo em Francês | MEDLINE | ID: mdl-29589658

RESUMO

As usual, numerous papers published in 2017 contributed to optimize the management of patients in all clinical cardiologic fields. It is of course impossible to summarize them all in such an article. Subjects and papers were thus selected if they were thought to be particularly important for non-cardiologist physicians, especially general practitioners. The authors would also like to take the opportunity of this article to honor the memory of Pr Daniel Wagner who unfortunately passed away after less than six months at the head of our Cardiology Department. He was well recognized for his generosity as well as his clinical and scientific competence. This article is dedicated to him.


Comme à l'accoutumée, l'année 2017 a été marquée par la publication de nombreux travaux permettant d'optimaliser la prise en charge de nos patients dans tous les domaines de la cardiologie et il est évidemment impossible de les synthétiser ici de façon exhaustive. Nous avons donc sélectionné les sujets et les travaux qui nous ont paru les plus saillants et surtout les plus utiles pour nos collègues non cardiologues et particulièrement pour nos collègues médecins de premier recours. Cette revue de l'année 2017 ne serait toutefois pas complète sans un hommage au Pr Daniel Wagner qui a débuté son activité de chef du service de cardiologie du CHUV au 1er janvier et nous a quittés après seulement quelques mois passés parmi nous. Daniel fut un chef de service apprécié tant pour ses qualités humaines que pour ses compétences scientifiques et cliniques. Cet article lui est donc dédié.


Assuntos
Cardiologia , Cardiologia/tendências , Humanos
13.
J Magn Reson Imaging ; 45(4): 1055-1067, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27571232

RESUMO

PURPOSE: To define reference values of cardiac volumes, dimensions, and new morpho-functional parameters normalized for age, gender, and body surface area by cine-bSSFP (balanced steady-state free-precession) magnetic resonance (MR). MATERIALS AND METHODS: We enrolled 308 healthy subjects subdivided by gender and by six age classes: class I, >15-20 years; class II, >20-30 years; class III, >30-40 years; class IV, >40-50 years; class V, >50-60 years; and class VI >60 years. Dimensional, volumetric and morpho-functional parameters of the left (LV) and right (RV) ventricles were measured using cine-bSSFP MRI at 1.5T. RESULTS: The LV and RV end-diastolic volume indexes (EDVi) were inversely related to age (P < 0.0001 r = -0.34 and P < 0.0001 r = -0.37, respectively). In addition, the LV mass index decreased with age (P = 0.0004, r = -0.21). The LV longitudinal shortening was not significantly different among groups: ≥15% in all populations (95% confidence interval [CI]: 16-31). The sphericity index measured in end-diastole was higher in females than in males (P < 0.03): the upper limit was 40% for males and 42% for females. The normality cutoff of LV global function index was ≥33% in males and ≥35% in females. The end-diastolic volume (EDV) of RV and LV was balanced (RV/LV ratio 0.85-1.15) without differences in the population. The LV EDV/mass was 1.0-1.8 in males and 1.0-2.1 in females. CONCLUSION: This study provides potential age- and gender-specific reference. LEVEL OF EVIDENCE: 2 J. Magn. Reson. Imaging 2017;45:1055-1067.


Assuntos
Volume Cardíaco/fisiologia , Coração/diagnóstico por imagem , Coração/fisiologia , Imagem Cinética por Ressonância Magnética/métodos , Adolescente , Adulto , Fatores Etários , Feminino , Coração/fisiopatologia , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência , Fatores Sexuais , Adulto Jovem
14.
J Med Artif Intell ; 7: 3, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38584766

RESUMO

Background: Prediction of clinical outcomes in coronary artery disease (CAD) has been conventionally achieved using clinical risk factors. The relationship between imaging features and outcome is still not well understood. This study aims to use artificial intelligence to link image features with mortality outcome. Methods: A retrospective study was performed on patients who had stress perfusion cardiac magnetic resonance (SP-CMR) between 2011 and 2021. The endpoint was all-cause mortality. Convolutional neural network (CNN) was used to extract features from stress perfusion images, and multilayer perceptron (MLP) to extract features from electronic health records (EHRs), both networks were concatenated in a hybrid neural network (HNN) to predict study endpoint. Image CNN was trained to predict study endpoint directly from images. HNN and image CNN were compared with a linear clinical model using area under the curve (AUC), F1 scores, and McNemar's test. Results: Total of 1,286 cases were identified, with 201 death events (16%). The clinical model had good performance (AUC =80%, F1 score =37%). Best Image CNN model showed AUC =72% and F1 score =38%. HNN outperformed the other two models (AUC =82%, F1 score =43%). McNemar's test showed statistical difference between image CNN and both clinical model (P<0.01) and HNN (P<0.01). There was no significant difference between HNN and clinical model (P=0.15). Conclusions: Death in patients with suspected or known CAD can be predicted directly from stress perfusion images without clinical knowledge. Prediction can be improved by HNN that combines clinical and SP-CMR images.

15.
Eur Heart J Cardiovasc Imaging ; 25(7): 901-911, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38597630

RESUMO

AIMS: Hypertensive patients of African ancestry (Afr-a) have higher incidences of heart failure and worse clinical outcomes than hypertensive patients of European ancestry (Eu-a), yet the underlying mechanisms remain misunderstood. This study investigated right (RV) and left (LV) ventricular remodelling alongside myocardial tissue derangements between Afr-a and Eu-a hypertensives. METHODS AND RESULTS: 63 Afr-a and 47 Eu-a hypertensives underwent multi-parametric cardiovascular magnetic resonance. Biventricular volumes, mass, function, mass/end-diastolic volume (M/V) ratios, T2 and pre-/post-contrast T1 relaxation times, synthetic extracellular volume, and myocardial fibrosis (MF) were measured. 3D shape modelling was implemented to delineate ventricular geometry. LV and RV mass (indexed to body-surface-area) and M/V ratio were significantly greater in Afr-a than Eu-a hypertensives (67.1 ± 21.7 vs. 58.3 ± 16.7 g/m2, 12.6 ± 3.48 vs. 10.7 ± 2.71 g/m2, 0.79 ± 0.21 vs. 0.70 ± 0.14 g/mL, and 0.16 ± 0.04 vs. 0.13 ± 0.03 g/mL, respectively; P < 0.03). Afr-a patients showed greater basal interventricular septum thickness than Eu-a patients, influencing LV hypertrophy and RV cavity changes. This biventricular remodelling was associated with prolonged T2 relaxation time (47.0 ± 2.2 vs. 45.7 ± 2.2 ms, P = 0.005) and higher prevalence (23% vs. 4%, P = 0.001) and extent of MF [2.3 (0.6-14.3) vs. 1.6 (0.9-2.5) % LV mass, P = 0.008] in Afr-a patients. Multivariable linear regression showed that modifiable cardiovascular risk factors and greater end-diastolic volume, but not ethnicity, were independently associated with greater LV mass. CONCLUSION: Afr-a hypertensives had distinctive biventricular remodelling, including increased RV mass, septal thickening and myocardial tissue abnormalities compared with Eu-a hypertensives. From this study, modifiable cardiovascular risk factors and ventricular geometry, but not ethnicity, were independently associated with greater LV myocardial mass.


Assuntos
População Negra , Hipertensão , Imagem Cinética por Ressonância Magnética , Remodelação Ventricular , População Branca , Humanos , Masculino , Remodelação Ventricular/fisiologia , Feminino , Pessoa de Meia-Idade , Hipertensão/etnologia , Hipertensão/complicações , Imagem Cinética por Ressonância Magnética/métodos , População Branca/estatística & dados numéricos , População Negra/estatística & dados numéricos , Estudos de Coortes , Idoso , Adulto , Medição de Risco , Miocárdio/patologia , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/etnologia , Hipertrofia Ventricular Esquerda/fisiopatologia
16.
J Am Heart Assoc ; 13(3): e031489, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38240222

RESUMO

BACKGROUND: Embolic stroke of unknown source (ESUS) accounts for 1 in 6 ischemic strokes. Current guidelines do not recommend routine cardiac magnetic resonance (CMR) imaging in ESUS, and beyond the identification of cardioembolic sources, there are no data assessing new clinical findings from CMR in ESUS. This study aimed to assess the prevalence of new cardiac and noncardiac findings and to determine their impact on clinical care in patients with ESUS. METHODS AND RESULTS: In this prospective, multicenter, observational study, CMR imaging was performed within 3 months of ESUS. All scans were reported according to standard clinical practice. A new clinical finding was defined as one not previously identified through prior clinical evaluation. A clinically significant finding was defined as one resulting in further investigation, follow-up, or treatment. A change in patient care was defined as initiation of medical, interventional, surgical, or palliative care. From 102 patients recruited, 96 underwent CMR imaging. One or more new clinical findings were observed in 59 patients (61%). New findings were clinically significant in 48 (81%) of these patients. Of 40 patients with a new clinically significant cardiac finding, 21 (53%) experienced a change in care (medical therapy, n=15; interventional/surgical procedure, n=6). In 12 patients with a new clinically significant extracardiac finding, 6 (50%) experienced a change in care (medical therapy, n=4; palliative care, n=2). CONCLUSIONS: CMR imaging identifies new clinically significant cardiac and noncardiac findings in half of patients with recent ESUS. Advanced cardiovascular screening should be considered in patients with ESUS. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04555538.


Assuntos
AVC Embólico , Embolia Intracraniana , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/epidemiologia , Prevalência , Estudos Prospectivos , Imageamento por Ressonância Magnética , Embolia Intracraniana/diagnóstico por imagem , Embolia Intracraniana/epidemiologia , Fatores de Risco
17.
Radiol Cardiothorac Imaging ; 6(3): e230247, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900026

RESUMO

Purpose To use unsupervised machine learning to identify phenotypic clusters with increased risk of arrhythmic mitral valve prolapse (MVP). Materials and Methods This retrospective study included patients with MVP without hemodynamically significant mitral regurgitation or left ventricular (LV) dysfunction undergoing late gadolinium enhancement (LGE) cardiac MRI between October 2007 and June 2020 in 15 European tertiary centers. The study end point was a composite of sustained ventricular tachycardia, (aborted) sudden cardiac death, or unexplained syncope. Unsupervised data-driven hierarchical k-mean algorithm was utilized to identify phenotypic clusters. The association between clusters and the study end point was assessed by Cox proportional hazards model. Results A total of 474 patients (mean age, 47 years ± 16 [SD]; 244 female, 230 male) with two phenotypic clusters were identified. Patients in cluster 2 (199 of 474, 42%) had more severe mitral valve degeneration (ie, bileaflet MVP and leaflet displacement), left and right heart chamber remodeling, and myocardial fibrosis as assessed with LGE cardiac MRI than those in cluster 1. Demographic and clinical features (ie, symptoms, arrhythmias at Holter monitoring) had negligible contribution in differentiating the two clusters. Compared with cluster 1, the risk of developing the study end point over a median follow-up of 39 months was significantly higher in cluster 2 patients (hazard ratio: 3.79 [95% CI: 1.19, 12.12], P = .02) after adjustment for LGE extent. Conclusion Among patients with MVP without significant mitral regurgitation or LV dysfunction, unsupervised machine learning enabled the identification of two phenotypic clusters with distinct arrhythmic outcomes based primarily on cardiac MRI features. These results encourage the use of in-depth imaging-based phenotyping for implementing arrhythmic risk prediction in MVP. Keywords: MR Imaging, Cardiac, Cardiac MRI, Mitral Valve Prolapse, Cluster Analysis, Ventricular Arrhythmia, Sudden Cardiac Death, Unsupervised Machine Learning Supplemental material is available for this article. © RSNA, 2024.


Assuntos
Prolapso da Valva Mitral , Fenótipo , Aprendizado de Máquina não Supervisionado , Humanos , Prolapso da Valva Mitral/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Sistema de Registros , Imagem Cinética por Ressonância Magnética/métodos , Arritmias Cardíacas/diagnóstico por imagem , Arritmias Cardíacas/fisiopatologia , Adulto , Imageamento por Ressonância Magnética
18.
Eur Heart J Cardiovasc Imaging ; 24(4): 472-482, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35792682

RESUMO

AIMS: Right ventricular systolic dysfunction (RVSD) is an important determinant of outcomes in heart failure (HF) cohorts. While the quantitative assessment of RV function is challenging using 2D-echocardiography, cardiac magnetic resonance (CMR) is the gold standard with its high spatial resolution and precise anatomical definition. We sought to investigate the prognostic value of CMR-derived RV systolic function in a large cohort of HF with reduced ejection fraction (HFrEF). METHODS AND RESULTS: Study cohort comprised of patients enrolled in the CarDiac MagnEtic Resonance for Primary Prevention Implantable CardioVerter DefibrillAtor ThErapy registry who had HFrEF and had simultaneous baseline CMR and echocardiography (n = 2449). RVSD was defined as RV ejection fraction (RVEF) <45%. Kaplan-Meier curves and cox regression were used to investigate the association between RVSD and all-cause mortality (ACM). Mean age was 59.8 ± 14.0 years, 42.0% were female, and mean left ventricular ejection fraction (LVEF) was 34.0 ± 10.8. Median follow-up was 959 days (interquartile range: 560-1590). RVSD was present in 936 (38.2%) and was an independent predictor of ACM (adjusted hazard ratio = 1.44; 95% CI [1.09-1.91]; P = 0.01). On subgroup analyses, the prognostic value of RVSD was more pronounced in NYHA I/II than in NYHA III/IV, in LVEF <35% than in LVEF ≥35%, and in patients with renal dysfunction when compared to those with normal renal function. CONCLUSION: RV systolic dysfunction is an independent predictor of ACM in HFrEF, with a more pronounced prognostic value in select subgroups, likely reflecting the importance of RVSD in the early stages of HF progression.


Assuntos
Cardiomiopatias , Desfibriladores Implantáveis , Insuficiência Cardíaca , Disfunção Ventricular Direita , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Masculino , Prognóstico , Volume Sistólico , Função Ventricular Esquerda , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/complicações , Desfibriladores Implantáveis/efeitos adversos , Fatores de Risco , Imagem Cinética por Ressonância Magnética/métodos , Cardiomiopatias/complicações , Espectroscopia de Ressonância Magnética/efeitos adversos , Função Ventricular Direita , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/terapia , Disfunção Ventricular Direita/etiologia
19.
Cardiol J ; 29(4): 591-600, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35762079

RESUMO

BACKGROUND: Morphine reduces absorption and delays action onset of potent oral P2Y12 receptor inhibitors in patients with ST-segment elevation myocardial infarction (STEMI). We sought to determine the differential effects of fentanyl compared to morphine on the pharmacodynamics and pharmacokinetics of ticagrelor in STEMI patients undergoing primary percutaneous coronary intervention (PCI). METHODS: PERSEUS (NCT02531165) was a prospective, single-center, open-label, randomized controlled study. Patients with STEMI who required analgesia were randomly assigned in a 1:1 ratio to treatment with intravenous fentanyl or morphine after ticagrelor loading dose (LD) administration. The primary endpoint was platelet reactivity at 2 hours after ticagrelor LD assessed by P2Y12 reaction units (PRU). RESULTS: The study was prematurely stopped in June 2017 after enrolment of 38 out of 56 planned patients. PRU at 2 hours following ticagrelor LD was 173.3 ± 89.7 in the fentanyl group and 210.3 ± 76.4 in the morphine group (p = 0.179). At 4 hours, PRU was significantly lower among patients treated with fentanyl as compared to those treated with morphine (90.1 ± 97.4 vs. 168.0 ± 72.2; p = 0.011). Maximal plasma concentrations of ticagrelor and its active metabolite AR-C124910XX tended to be delayed and numerically lower among patients treated with morphine compared to fentanyl. Total exposures to ticagrelor and AR-C124910XX within 6 hours after ticagrelor LD were numerically greater among patients treated with fentanyl compared to those treated with morphine. CONCLUSIONS: In patients with STEMI undergoing primary PCI, fentanyl did not improve platelet inhibition at 2 hours after ticagrelor pre-treatment compared with morphine. Fentanyl may, however, accelerate ticagrelor absorption and increase platelet inhibition at 4 hours compared to morphine.


Assuntos
Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Fentanila/efeitos adversos , Humanos , Morfina , Intervenção Coronária Percutânea/efeitos adversos , Inibidores da Agregação Plaquetária , Testes de Função Plaquetária , Estudos Prospectivos , Antagonistas do Receptor Purinérgico P2Y , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Ticagrelor/efeitos adversos , Resultado do Tratamento
20.
Front Cardiovasc Med ; 9: 854750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463767

RESUMO

In COVID-19 the development of severe viral pneumonia that is coupled with systemic inflammatory response triggers multi-organ failure and is of major concern. Cardiac involvement occurs in nearly 60% of patients with pre-existing cardiovascular conditions and heralds worse clinical outcome. Diagnoses carried out in the acute phase of COVID-19 rely upon increased levels of circulating cardiac injury biomarkers and transthoracic echocardiography. These diagnostics, however, were unable to pinpoint the mechanisms of cardiac injury in COVID-19 patients. Identifying the main features of cardiac injury remains an urgent yet unmet need in cardiology, given the potential clinical consequences. Cardiovascular magnetic resonance (CMR) provides an unparalleled opportunity to gain a deeper insight into myocardial injury given its unique ability to interrogate the properties of myocardial tissue. This endeavor is particularly important in convalescent COVID-19 patients as many continue to experience chest pain, palpitations, dyspnea and exertional fatigue, six or more months after the acute illness. This review will provide a critical appraisal of research on cardiovascular damage in convalescent adult COVID-19 patients with an emphasis on the use of CMR and its value to our understanding of organ damage.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa