Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 616
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 155(6): 1351-64, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24290359

RESUMO

Parkinson's disease (PD) is characterized by loss of A9 dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). An association has been reported between PD and exposure to mitochondrial toxins, including environmental pesticides paraquat, maneb, and rotenone. Here, using a robust, patient-derived stem cell model of PD allowing comparison of A53T α-synuclein (α-syn) mutant cells and isogenic mutation-corrected controls, we identify mitochondrial toxin-induced perturbations in A53T α-syn A9 DA neurons (hNs). We report a pathway whereby basal and toxin-induced nitrosative/oxidative stress results in S-nitrosylation of transcription factor MEF2C in A53T hNs compared to corrected controls. This redox reaction inhibits the MEF2C-PGC1α transcriptional network, contributing to mitochondrial dysfunction and apoptotic cell death. Our data provide mechanistic insight into gene-environmental interaction (GxE) in the pathogenesis of PD. Furthermore, using small-molecule high-throughput screening, we identify the MEF2C-PGC1α pathway as a therapeutic target to combat PD.


Assuntos
Interação Gene-Ambiente , Mitocôndrias/efeitos dos fármacos , Paraquat/toxicidade , Doença de Parkinson/genética , Doença de Parkinson/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição MEF2 , Mutação/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Espécies Reativas de Nitrogênio/metabolismo , Substância Negra/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Cell ; 149(3): 708-21, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22541439

RESUMO

Alzheimer's disease (AD) results in cognitive decline and altered network activity, but the mechanisms are unknown. We studied human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Electroencephalographic recordings in hAPP mice revealed spontaneous epileptiform discharges, indicating network hypersynchrony, primarily during reduced gamma oscillatory activity. Because this oscillatory rhythm is generated by inhibitory parvalbumin (PV) cells, network dysfunction in hAPP mice might arise from impaired PV cells. Supporting this hypothesis, hAPP mice and AD patients had decreased levels of the interneuron-specific and PV cell-predominant voltage-gated sodium channel subunit Nav1.1. Restoring Nav1.1 levels in hAPP mice by Nav1.1-BAC expression increased inhibitory synaptic activity and gamma oscillations and reduced hypersynchrony, memory deficits, and premature mortality. We conclude that reduced Nav1.1 levels and PV cell dysfunction critically contribute to abnormalities in oscillatory rhythms, network synchrony, and memory in hAPP mice and possibly in AD.


Assuntos
Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Interneurônios/metabolismo , Aprendizagem , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1 , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Canais de Sódio/metabolismo , Sinapses
3.
Cell ; 145(6): 863-74, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21640374

RESUMO

Metabolites in the kynurenine pathway, generated by tryptophan degradation, are thought to play an important role in neurodegenerative disorders, including Alzheimer's and Huntington's diseases. In these disorders, glutamate receptor-mediated excitotoxicity and free radical formation have been correlated with decreased levels of the neuroprotective metabolite kynurenic acid. Here, we describe the synthesis and characterization of JM6, a small-molecule prodrug inhibitor of kynurenine 3-monooxygenase (KMO). Chronic oral administration of JM6 inhibits KMO in the blood, increasing kynurenic acid levels and reducing extracellular glutamate in the brain. In a transgenic mouse model of Alzheimer's disease, JM6 prevents spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extends life span, prevents synaptic loss, and decreases microglial activation in a mouse model of Huntington's disease. These findings support a critical link between tryptophan metabolism in the blood and neurodegeneration, and they provide a foundation for treatment of neurodegenerative diseases.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Huntington/tratamento farmacológico , Ácido Cinurênico/análise , Quinurenina 3-Mono-Oxigenase/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Tiazóis/uso terapêutico , Administração Oral , Doença de Alzheimer/fisiopatologia , Animais , Química Encefálica , Modelos Animais de Doenças , Feminino , Humanos , Ácido Cinurênico/sangue , Masculino , Camundongos , Camundongos Transgênicos , Sulfonamidas/administração & dosagem , Tiazóis/administração & dosagem
4.
Nature ; 586(7831): 735-740, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32879487

RESUMO

Innate immunity is associated with Alzheimer's disease1, but the influence of immune activation on the production of amyloid-ß is unknown2,3. Here we identify interferon-induced transmembrane protein 3 (IFITM3) as a γ-secretase modulatory protein, and establish a mechanism by which inflammation affects the generation of amyloid-ß. Inflammatory cytokines induce the expression of IFITM3 in neurons and astrocytes, which binds to γ-secretase and upregulates its activity, thereby increasing the production of amyloid-ß. The expression of IFITM3 is increased with ageing and in mouse models that express familial Alzheimer's disease genes. Furthermore, knockout of IFITM3 reduces γ-secretase activity and the formation of amyloid plaques in a transgenic mouse model (5xFAD) of early amyloid deposition. IFITM3 protein is upregulated in tissue samples from a subset of patients with late-onset Alzheimer's disease that exhibit higher γ-secretase activity. The amount of IFITM3 in the γ-secretase complex has a strong and positive correlation with γ-secretase activity in samples from patients with late-onset Alzheimer's disease. These findings reveal a mechanism in which γ-secretase is modulated by neuroinflammation via IFITM3 and the risk of Alzheimer's disease is thereby increased.


Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Imunidade Inata , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Idade de Início , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/química , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Domínio Catalítico , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Inflamação , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/metabolismo , Proteínas de Ligação a RNA/genética , Risco , Regulação para Cima
5.
Nat Rev Neurosci ; 21(10): 587, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32792667

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nat Rev Neurosci ; 21(8): 433-444, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32601397

RESUMO

Globally, 50 million people live with dementia, with Alzheimer disease (AD) being responsible for two-thirds of the total cases. As ageing is the main risk factor for dementia-related neurodegeneration, changes in the timing or nature of the cellular hallmarks of normal ageing might be key to understanding the events that convert normal ageing into neurodegeneration. Cellular senescence is a candidate mechanism that might be important for this conversion. Under persistent stress, as occurs in ageing, both postmitotic cells - including neurons - and proliferative cells - such as astrocytes and microglia, among others - can engender a state of chronic cellular senescence that is characterized by the secretion of pro-inflammatory molecules that promote the functional decline of tissues and organs. Ablation of senescent cells has been postulated as a promising therapeutic venue to target the ageing phenotype and, thus, prevent or mitigate ageing-related diseases. However, owing to a lack of evidence, it is not possible to label cellular senescence as a cause or a consequence of neurodegeneration. This Review examines cellular senescence in the context of ageing and AD, and discusses which of the processes - cellular senescence or AD - might come first.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Senescência Celular/fisiologia , Envelhecimento/patologia , Animais , Humanos
7.
J Neuroinflammation ; 21(1): 93, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622654

RESUMO

The neuroinflammatory process in synucleinopathies of the aging population such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB) involves microglial activation as well as infiltration of the CNS by T cells and natural killer T cells (NKTs). To evaluate the potential of targeting NKT cells to modulate neuroinflammation, we treated α-syn transgenic (tg) mice (e.g.: Thy1 promoter line 61) with an antibody against CD1d, which is a glycoprotein expressed in antigen presenting cells (APCs). CD1d-presented lipid antigens activate NKT cells through the interaction with T cell receptor in NKTs, resulting in the production of cytokines. Thus, we hypothesized that blocking the APC-NKT interaction with an anti-CD1d antibody might reduce neuroinflammation and neurodegeneration in models of DLB/PD. Treatment with the anti-CD1d antibody did not have effects on CD3 (T cells), slightly decreased CD4 and increased CD8 lymphocytes in the mice. Moreover, double labeling studies showed that compared to control (IgG) treated α-syn tg mice, treatment with anti-CD1d decreased numbers of CD3/interferon γ (IFN γ)-positive cells, consistent with NKTs. Further double labeling studies showed that CD1d-positive cells co-localized with the astrocytes marker GFAP and that anti-CD1d antibody reduced this effect. While in control α-syn tg mice CD3 positive cells were near astrocytes, this was modified by the treatment with the CD1d antibody. By qPCR, levels of IFN γ, CCL4, and interleukin-6 were increased in the IgG treated α-syn tg mice. Treatment with CD1d antibody blunted this cytokine response that was associated with reduced astrocytosis and microgliosis in the CNS of the α-syn tg mice treated with CD1d antibody. Flow cytometric analysis of immune cells in α-syn tg mice revealed that CD1d-tet + T cells were also increased in the spleen of α-syn tg mice, which treatment with the CD1d antibody reduced. Reduced neuroinflammation in the anti-CD1d-treated α-syn tg mice was associated with amelioration of neurodegenerative pathology. These results suggest that reducing infiltration of NKT cells with an antibody against CD1d might be a potential therapeutical approach for DLB/PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Camundongos , Animais , alfa-Sinucleína/genética , Corpos de Lewy/patologia , Doenças Neuroinflamatórias , Doença de Parkinson/patologia , Camundongos Transgênicos , Imunoterapia/métodos , Citocinas , Imunoglobulina G
8.
Cell ; 139(6): 1157-69, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20005808

RESUMO

The insulin/insulin growth factor (IGF) signaling (IIS) pathway is a key regulator of aging of worms, flies, mice, and likely humans. Delayed aging by IIS reduction protects the nematode C. elegans from toxicity associated with the aggregation of the Alzheimer's disease-linked human peptide, Abeta. We reduced IGF signaling in Alzheimer's model mice and discovered that these animals are protected from Alzheimer's-like disease symptoms, including reduced behavioral impairment, neuroinflammation, and neuronal loss. This protection is correlated with the hyperaggregation of Abeta leading to tightly packed, ordered plaques, suggesting that one aspect of the protection conferred by reduced IGF signaling is the sequestration of soluble Abeta oligomers into dense aggregates of lower toxicity. These findings indicate that the IGF signaling-regulated mechanism that protects from Abeta toxicity is conserved from worms to mammals and point to the modulation of this signaling pathway as a promising strategy for the development of Alzheimer's disease therapy.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Longevidade , Transdução de Sinais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , Receptor IGF Tipo 1/metabolismo
9.
J Neurosci ; 42(40): 7673-7688, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36333098

RESUMO

As the CNS-resident macrophages and member of the myeloid lineage, microglia fulfill manifold functions important for brain development and homeostasis. In the context of neurodegenerative diseases, they have been implicated in degenerative and regenerative processes. The discovery of distinct activation patterns, including increased phagocytosis, indicated a damaging role of myeloid cells in multiple system atrophy (MSA), a devastating, rapidly progressing atypical parkinsonian disorder. Here, we analyzed the gene expression profile of microglia in a mouse model of MSA (MBP29-hα-syn) and identified a disease-associated expression profile and upregulation of the colony-stimulating factor 1 (Csf1). Thus, we hypothesized that CSF1 receptor-mediated depletion of myeloid cells using PLX5622 modifies the disease progression and neuropathological phenotype in this mouse model. Intriguingly, sex-balanced analysis of myeloid cell depletion in MBP29-hα-syn mice revealed a two-faced outcome comprising an improved survival rate accompanied by a delayed onset of neurological symptoms in contrast to severely impaired motor functions. Furthermore, PLX5622 reversed gene expression profiles related to myeloid cell activation but reduced gene expression associated with transsynaptic signaling and signal release. While transcriptional changes were accompanied by a reduction of dopaminergic neurons in the SNpc, striatal neuritic density was increased upon myeloid cell depletion in MBP29-hα-syn mice. Together, our findings provide insight into the complex, two-faced role of myeloid cells in the context of MSA emphasizing the importance to carefully balance the beneficial and adverse effects of CSF1R inhibition in different models of neurodegenerative disorders before its clinical translation.SIGNIFICANCE STATEMENT Myeloid cells have been implicated as detrimental in the disease pathogenesis of multiple system atrophy. However, long-term CSF1R-dependent depletion of these cells in a mouse model of multiple system atrophy demonstrates a two-faced effect involving an improved survival associated with a delayed onset of disease and reduced inflammation which was contrasted by severely impaired motor functions, synaptic signaling, and neuronal circuitries. Thus, this study unraveled a complex role of myeloid cells in multiple system atrophy, which indicates important functions beyond the previously described disease-associated, destructive phenotype and emphasized the need of further investigation to carefully and individually fine-tune immunologic processes in different neurodegenerative diseases.


Assuntos
Atrofia de Múltiplos Sistemas , Animais , Camundongos , Atrofia de Múltiplos Sistemas/genética , Longevidade , Compostos Orgânicos/farmacologia , Microglia/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Modelos Animais de Doenças , Células Mieloides/metabolismo , Receptores de Fator Estimulador de Colônias
10.
Neurobiol Dis ; 186: 106285, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690676

RESUMO

Neurodegenerative disorders of aging are characterized by the progressive accumulation of proteins such as α-synuclein (α-syn) and amyloid beta (Aß). Misfolded and aggregated α-syn has been implicated in neurological disorders such as Parkinson's disease, and Dementia with Lewy Bodies, but less so in Alzheimer's Disease (AD), despite the fact that accumulation of α-syn has been confirmed in over 50% of postmortem brains neuropathologically diagnosed with AD. To date, no therapeutic strategy has effectively or consistently downregulated α-syn in AD. Here we tested the hypothesis that by using a systemically-delivered peptide (ApoB11) bound to a modified antisense oligonucleotide against α-syn (ASO-α-syn), we can downregulate α-syn expression in an AD mouse model and improve behavioral and neuropathologic phenotypes. Our results demonstrate that monthly systemic treatment with of ApoB11:ASO α-syn beginning at 6 months of age reduces expression of α-synuclein in the brains of 9-month-old AD mice. Downregulation of α-syn led to reduction in Aß plaque burden, prevented neuronal loss and astrogliosis. Furthermore, we found that AD mice treated with ApoB11:ASO α-syn had greatly improved hippocampal and spatial memory function in comparison to their control counterparts. Collectively, our data supports the reduction of α-syn through use of systemically-delivered ApoB11:ASO α-syn as a promising future disease-modifying therapeutic for AD.


Assuntos
Doença de Alzheimer , Oligonucleotídeos Antissenso , Animais , Camundongos , Oligonucleotídeos Antissenso/farmacologia , alfa-Sinucleína/genética , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Apolipoproteínas B , Modelos Animais de Doenças
11.
Neurobiol Dis ; 178: 106010, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702318

RESUMO

Mutations or triplication of the alpha synuclein (ASYN) gene contribute to synucleinopathies including Parkinson's disease (PD), Dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Recent evidence suggests that ASYN also plays an important role in amyloid-induced neurotoxicity, although the mechanism(s) remains unknown. One hypothesis is that accumulation of ASYN alters endolysosomal pathways to impact axonal trafficking and processing of the amyloid precursor protein (APP). To define an axonal function for ASYN, we used a transgenic mouse model of synucleinopathy that expresses a GFP-human ASYN (GFP-hASYN) transgene and an ASYN knockout (ASYN-/-) mouse model. Our results demonstrate that expression of GFP-hASYN in primary neurons derived from a transgenic mouse impaired axonal trafficking and processing of APP. In addition, axonal transport of BACE1, Rab5, Rab7, lysosomes and mitochondria were also reduced in these neurons. Interestingly, axonal transport of these organelles was also affected in ASYN-/- neurons, suggesting that ASYN plays an important role in maintaining normal axonal transport function. Therefore, selective impairment of trafficking and processing of APP by ASYN may act as a potential mechanism to induce pathological features of Alzheimer's disease (AD) in PD patients.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , Camundongos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidases , Doença de Parkinson/genética , Camundongos Transgênicos , Lisossomos/metabolismo
12.
J Neurovirol ; 29(6): 713-722, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37943478

RESUMO

We examined whether cognitive reserve moderated the relationship between neurodegeneration and cognition in 67 postmortem persons with HIV (PWH) who were cognitively assessed within 1 year of death. Cognitive reserve was measured via the Wide Range Achievement Test-4 reading subtest (WRAT4). Synaptodendritic neurodegeneration was based on densities of synaptophysin and microtubule-associated protein 2 immunohistochemical reactivity in frontal cortex, and categorized as minimal, moderate, or severe (tertile-split). T-Scores from 15 cognitive tests were averaged into a global cognitive T-score. Among those with low cognitive reserve (based on WRAT4 median split), the moderate neurodegeneration group showed cognition that was poorer than the minimal neurodegeneration group and comparable to the severe neurodegeneration group. Among those with high cognitive reserve, the moderate neurodegeneration group showed cognition comparable to the minimal neurodegeneration group and better than the severe neurodegeneration group. High cognitive reserve may buffer against cognitive impairment among PWH with moderate, but not severe, neurodegeneration.


Assuntos
Disfunção Cognitiva , Reserva Cognitiva , Infecções por HIV , Humanos , Infecções por HIV/patologia , Disfunção Cognitiva/complicações , Cognição , Testes Neuropsicológicos
13.
Mol Psychiatry ; 26(10): 5751-5765, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32467645

RESUMO

Beginning at early stages, human Alzheimer's disease (AD) brains manifest hyperexcitability, contributing to subsequent extensive synapse loss, which has been linked to cognitive dysfunction. No current therapy for AD is disease-modifying. Part of the problem with AD drug discovery is that transgenic mouse models have been poor predictors of potential human treatment. While it is undoubtedly important to test drugs in these animal models, additional evidence for drug efficacy in a human context might improve our chances of success. Accordingly, in order to test drugs in a human context, we have developed a platform of physiological assays using patch-clamp electrophysiology, calcium imaging, and multielectrode array (MEA) experiments on human (h)iPSC-derived 2D cortical neuronal cultures and 3D cerebral organoids. We compare hiPSCs bearing familial AD mutations vs. their wild-type (WT) isogenic controls in order to characterize the aberrant electrical activity in such a human context. Here, we show that these AD neuronal cultures and organoids manifest increased spontaneous action potentials, slow oscillatory events (~1 Hz), and hypersynchronous network activity. Importantly, the dual-allosteric NMDAR antagonist NitroSynapsin, but not the FDA-approved drug memantine, abrogated this hyperactivity. We propose a novel model of synaptic plasticity in which aberrant neural networks are rebalanced by NitroSynapsin. We propose that hiPSC models may be useful for screening drugs to treat hyperexcitability and related synaptic damage in AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Potenciais de Ação , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Camundongos , Redes Neurais de Computação , Neurônios
14.
Brain ; 144(12): 3692-3709, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34117864

RESUMO

NPT520-34 is a clinical stage, small molecule being developed for the treatment of Parkinson's disease and other neurodegenerative disorders. The therapeutic potential of NPT520-34 was first suggested by findings from cell-based assays of alpha-synuclein clearance. As reported here, NPT520-34 was subsequently evaluated for therapeutically relevant actions in a transgenic animal model of Parkinson's disease that overexpresses human alpha-synuclein and in an acute lipopolysaccharide-challenge model using wild-type mice. Daily administration of NPT520-34 to mThy1-alpha-synuclein (Line 61) transgenic mice for 1 or 3 months resulted in reduced alpha-synuclein pathology, reduced expression of markers of neuroinflammation, and improvements in multiple indices of motor function. In a lipopolysaccharide-challenge model using wild-type mice, a single dose of NPT520-34 reduced lipopolysaccharide-evoked increases in the expression of several pro-inflammatory cytokines in plasma. These findings demonstrate the beneficial effects of NPT520-34 on both inflammation and protein-pathology end points, with consequent improvements in motor function in an animal model of Parkinson's disease. These findings further indicate that NPT520-34 may have two complementary actions: (i) to increase the clearance of neurotoxic protein aggregates; and (ii) to directly attenuate inflammation. NPT520-34 treatment may thereby address two of the predominate underlying pathophysiological aspects of neurodegenerative disorders such as Parkinson's disease.


Assuntos
Encéfalo/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/patologia , Animais , Encéfalo/patologia , Humanos , Camundongos , Camundongos Transgênicos , Sinucleinopatias/patologia
15.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682759

RESUMO

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are characterized by the aberrant accumulation of intracytoplasmic misfolded and aggregated α-synuclein (α-Syn), resulting in neurodegeneration associated with inflammation. The propagation of α-Syn aggregates from cell to cell is implicated in the spreading of pathological α-Syn in the brain and disease progression. We and others demonstrated that antibodies generated after active and passive vaccinations could inhibit the propagation of pathological α-Syn in the extracellular space and prevent/inhibit disease/s in the relevant animal models. We recently tested the immunogenicity and efficacy of four DNA vaccines on the basis of the universal MultiTEP platform technology in the DLB/PD mouse model. The antibodies generated by these vaccines efficiently reduced/inhibited the accumulation of pathological α-Syn in the different brain regions and improved the motor deficit of immunized female mice. The most immunogenic and preclinically effective vaccine, PV-1950D, targeting three B-cell epitopes of pathological α-Syn simultaneously, has been selected for future IND-enabling studies. However, to ensure therapeutically potent concentrations of α-Syn antibodies in the periphery of the vaccinated elderly, we developed a recombinant protein-based MultiTEP vaccine, PV-1950R/A, and tested its immunogenicity in young and aged D-line mice. Antibody responses induced by immunizations with the PV-1950R/A vaccine and its homologous DNA counterpart, PV-1950D, in a mouse model of PD/DLB have been compared.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Vacinas de DNA , Animais , Anticorpos , Modelos Animais de Doenças , Epitopos de Linfócito B , Feminino , Doença por Corpos de Lewy/metabolismo , Camundongos , Doença de Parkinson/metabolismo , Proteínas Recombinantes , alfa-Sinucleína/metabolismo
16.
Neurobiol Dis ; 158: 105478, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34390837

RESUMO

In Parkinson's disease (PD), the second most common neurodegenerative disorder, non-motor symptoms often precede the development of debilitating motor symptoms and present a severe impact on the quality of life. Lewy bodies containing misfolded α-synuclein progressively develop in neurons throughout the peripheral and central nervous system, which may be correlated with the early development of non-motor symptoms. Among those, increased fear and anxiety is frequent in PD and thought to result from pathology outside the dopaminergic system, which has been the focus of symptomatic treatment to alleviate motor symptoms. Alpha-synuclein accumulation has been reported in the amygdala of PD patients, a brain region critically involved in fear and anxiety. Here we asked whether α-synuclein overexpression alone is sufficient to induce an enhanced fear phenotype in vivo and which pathological mechanisms are involved. Transgenic mice expressing human wild-type α-synuclein (Thy1-aSyn), a well-established model of PD, were subjected to fear conditioning followed by extinction and then tested for extinction memory retention followed by histopathological analysis. Thy1-aSyn mice showed enhanced tone fear across acquisition and extinction compared to wild-type littermates, as well as a trend to less retention of fear extinction. Immunohistochemical analysis of the basolateral nucleus of the amygdala, a nucleus critically involved in tone fear learning, revealed extensive α-synuclein pathology, with accumulation, phosphorylation, and aggregation of α-synuclein in transgenic mice. This pathology was accompanied by microgliosis and parvalbumin neuron loss in this nucleus, which could explain the enhanced fear phenotype. Importantly, this non-motor phenotype was detected in the pre-clinical phase, prior to dopamine loss in Thy1-aSyn mice, thus replicating observations in patients. Results obtained in this study suggest a possible mechanism by which increased anxiety and maladaptive fear processing may occur in PD, opening a door for therapeutic options and further early biomarker research.


Assuntos
Tonsila do Cerebelo/patologia , Medo/psicologia , Gliose/genética , Gliose/patologia , Neurônios/patologia , Doença de Parkinson/genética , Parvalbuminas , Sinucleinopatias/genética , Sinucleinopatias/patologia , Animais , Extinção Psicológica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Parkinson/patologia , Doença de Parkinson/psicologia , Fosforilação , alfa-Sinucleína/genética
17.
Neurobiol Dis ; 152: 105277, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33516874

RESUMO

The microtubule-associated protein tau is implicated in multiple degenerative diseases including retinal diseases such as glaucoma; however, the way tau initiates retinopathy is unclear. Previous retinal assessments in mouse models of tauopathy suggest that mutations in four-repeat (4R) tau are associated with disease-induced retinal dysfunction, while shifting tau isoform ratio to favor three-repeat (3R) tau production enhanced photoreceptor function. To further understand how alterations in tau expression impact the retina, we analyzed the retinas of transgenic mice overexpressing mutant 3R tau (m3R tau-Tg), a model known to exhibit Pick's Disease pathology in the brain. Analysis of retinal cross-sections from young (3 month) and adult (9 month) mice detected asymmetric 3R tau immunoreactivity in m3R tau-Tg retina, concentrated in the retinal ganglion and amacrine cells of the dorsal retinal periphery. Accumulation of hyperphosphorylated tau was detected specifically in the detergent insoluble fraction of the adult m3R tau-Tg retina. RNA-seq analysis highlighted biological pathways associated with tauopathy that were uniquely altered in m3R tau-Tg retina. The upregulation of transcript encoding apoptotic protease caspase-2 coincided with increased immunostaining in predominantly 3R tau positive retinal regions. In adult m3R tau-Tg, the dorsal peripheral retina of the adult m3R tau-Tg exhibited decreased cell density in the ganglion cell layer (GCL) and reduced thickness of the inner plexiform layer (IPL) compared to the ventral peripheral retina. Together, these data indicate that mutant 3R tau may mediate toxicity in retinal ganglion cells (RGC) by promoting caspase-2 expression which results in RGC degeneration. The m3R tau-Tg line has the potential to be used to assess tau-mediated RGC degeneration and test novel therapeutics for degenerative diseases such as glaucoma.


Assuntos
Caspase 2/metabolismo , Doenças Retinianas/patologia , Células Ganglionares da Retina/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Morte Celular , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Isoformas de Proteínas , Doenças Retinianas/metabolismo , Células Ganglionares da Retina/metabolismo , Proteínas tau/genética
18.
Brain ; 143(1): 234-248, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31755958

RESUMO

Parkinson's disease is a genetically complex disorder. Multiple genes have been shown to contribute to the risk of Parkinson's disease, and currently 90 independent risk variants have been identified by genome-wide association studies. Thus far, a number of genes (including SNCA, LRRK2, and GBA) have been shown to contain variability across a spectrum of frequency and effect, from rare, highly penetrant variants to common risk alleles with small effect sizes. Variants in GBA, encoding the enzyme glucocerebrosidase, are associated with Lewy body diseases such as Parkinson's disease and Lewy body dementia. These variants, which reduce or abolish enzymatic activity, confer a spectrum of disease risk, from 1.4- to >10-fold. An outstanding question in the field is what other genetic factors that influence GBA-associated risk for disease, and whether these overlap with known Parkinson's disease risk variants. Using multiple, large case-control datasets, totalling 217 165 individuals (22 757 Parkinson's disease cases, 13 431 Parkinson's disease proxy cases, 622 Lewy body dementia cases and 180 355 controls), we identified 1691 Parkinson's disease cases, 81 Lewy body dementia cases, 711 proxy cases and 7624 controls with a GBA variant (p.E326K, p.T369M or p.N370S). We performed a genome-wide association study and analysed the most recent Parkinson's disease-associated genetic risk score to detect genetic influences on GBA risk and age at onset. We attempted to replicate our findings in two independent datasets, including the personal genetics company 23andMe, Inc. and whole-genome sequencing data. Our analysis showed that the overall Parkinson's disease genetic risk score modifies risk for disease and decreases age at onset in carriers of GBA variants. Notably, this effect was consistent across all tested GBA risk variants. Dissecting this signal demonstrated that variants in close proximity to SNCA and CTSB (encoding cathepsin B) are the most significant contributors. Risk variants in the CTSB locus were identified to decrease mRNA expression of CTSB. Additional analyses suggest a possible genetic interaction between GBA and CTSB and GBA p.N370S induced pluripotent cell-derived neurons were shown to have decreased cathepsin B expression compared to controls. These data provide a genetic basis for modification of GBA-associated Parkinson's disease risk and age at onset, although the total contribution of common genetics variants is not large. We further demonstrate that common variability at genes implicated in lysosomal function exerts the largest effect on GBA associated risk for disease. Further, these results have implications for selection of GBA carriers for therapeutic interventions.


Assuntos
Catepsina B/genética , Glucosilceramidase/genética , Doença por Corpos de Lewy/genética , Doença de Parkinson/genética , Penetrância , alfa-Sinucleína/genética , Idade de Início , Estudos de Casos e Controles , Catepsina B/metabolismo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Glucosilceramidase/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Doença por Corpos de Lewy/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/metabolismo , Fatores de Risco , Sequenciamento Completo do Genoma , alfa-Sinucleína/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(30): 7813-7818, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29991596

RESUMO

α-Synuclein (α-Syn) aggregation, proceeding from oligomers to fibrils, is one central hallmark of neurodegeneration in synucleinopathies. α-Syn oligomers are toxic by triggering neurodegenerative processes in in vitro and in vivo models. However, the precise contribution of α-Syn oligomers to neurite pathology in human neurons and the underlying mechanisms remain unclear. Here, we demonstrate the formation of oligomeric α-Syn intermediates and reduced axonal mitochondrial transport in human neurons derived from induced pluripotent stem cells (iPSC) from a Parkinson's disease patient carrying an α-Syn gene duplication. We further show that increased levels of α-Syn oligomers disrupt axonal integrity in human neurons. We apply an α-Syn oligomerization model by expressing α-Syn oligomer-forming mutants (E46K and E57K) and wild-type α-Syn in human iPSC-derived neurons. Pronounced α-Syn oligomerization led to impaired anterograde axonal transport of mitochondria, which can be restored by the inhibition of α-Syn oligomer formation. Furthermore, α-Syn oligomers were associated with a subcellular relocation of transport-regulating proteins Miro1, KLC1, and Tau as well as reduced ATP levels, underlying axonal transport deficits. Consequently, reduced axonal density and structural synaptic degeneration were observed in human neurons in the presence of high levels of α-Syn oligomers. Together, increased dosage of α-Syn resulting in α-Syn oligomerization causes axonal transport disruption and energy deficits, leading to synapse loss in human neurons. This study identifies α-Syn oligomers as the critical species triggering early axonal dysfunction in synucleinopathies.


Assuntos
Transporte Axonal , Axônios/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Doenças Neurodegenerativas/metabolismo , Multimerização Proteica , Axônios/patologia , Linhagem Celular , Metabolismo Energético/genética , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Cinesinas , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , alfa-Sinucleína , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
20.
Traffic ; 19(11): 840-853, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30120810

RESUMO

The cytosolic chaperonin T-complex protein (TCP) 1-ring complex (TRiC) has been shown to exert neuroprotective effects on axonal transport through clearance of mutant Huntingtin (mHTT) in Huntington's disease. However, it is presently unknown if TRiC also has any effect on axonal transport in wild-type neurons. Here, we examined how TRiC impacted the retrograde axonal transport of brain-derived neurotrophic factor (BDNF). We found that expression of a single TRiC subunit significantly enhanced axonal transport of BDNF, leading to an increase in instantaneous velocity with a concomitant decrease in pauses for retrograde BDNF transport. The transport enhancing effect by TRiC was dependent on endogenous tau expression because no effect was seen in neurons from tau knockout mice. We showed that TRiC regulated the level of cyclin-dependent kinase 5 (CDK5)/p35 positively, contributing to TRiC-mediated tau phosphorylation (ptau). Expression of a single TRiC subunit increased the level of ptau while downregulation of the TRiC complex decreased ptau. We further demonstrated that TRiC-mediated increase in ptau induced detachment of tau from microtubules. Our study has thus revealed that TRiC-mediated increase in tau phosphorylation impacts retrograde axonal transport.


Assuntos
Transporte Axonal , Chaperonina com TCP-1/metabolismo , Proteínas tau/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células CHO , Células Cultivadas , Chaperonina com TCP-1/genética , Cricetinae , Cricetulus , Quinase 5 Dependente de Ciclina/metabolismo , Células HEK293 , Humanos , Microtúbulos/metabolismo , Fosforilação , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa