Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Org Biomol Chem ; 22(4): 767-783, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38167738

RESUMO

Among the eight different triazolopyrimidine isomers existing in nature, 1,2,4-triazolo[1,5-a]pyrimidine (TZP) is one of the most studied and used isomers in medicinal chemistry. For some years, our group has been involved in developing regioselective one-pot procedures for the synthesis of 2-amino-7-aryl-5-methyl- and 2-amino-5-aryl-7-methyl-TZPs of interest in the preparation of antiviral agents. In this work, taking advantage of a Biginelli-like multicomponent reaction (MCR), we report the identification of finely tunable conditions to regioselectively synthesize C-6 ester-substituted amino-TZP analogues, both in dihydro and oxidized forms. Indeed, the use of mild acidic conditions is strongly directed toward the regioselective synthesis of 5-aryl-7-methyl C-6-substituted TZP analogues, while the use of neutral ionic liquids shifted the regioselectivity towards 7-aryl-5-methyl derivatives. In addition, the novel synthesized scaffolds were functionalized at the C-2 position and evaluated for their antiviral activity against RNA viruses (influenza virus, flaviviruses, and SARS-CoV-2). Compounds 25 and 26 emerged as promising anti-flavivirus agents, showing activity in the low micromolar range.


Assuntos
Líquidos Iônicos , Isomerismo , Pirimidinas/química , Estereoisomerismo
2.
Arch Pharm (Weinheim) ; : e2400296, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923553

RESUMO

Nontuberculous mycobacteria (NTM), which include the Mycobacterium avium complex, are classified as difficult-to-treat pathogens due to their ability to quickly develop drug resistance against the most common antibiotics used to treat NTM infections. The overexpression of efflux pumps (EPs) was demonstrated to be a key mechanism of clarithromycin (CLA) resistance in NTM. Therefore, in this work, 24 compounds from an in-house library, characterized by chemical diversity, were tested as potential NTM EP inhibitors (EPIs) against Mycobacterium smegmatis mc2 155 and M. avium clinical isolates. Based on the acquired results, 12 novel analogs of the best derivatives 1b and 7b were designed and synthesized to improve the NTM EP inhibition activity. Among the second set of compounds, 13b emerged as the most potent NTM EPI. At a concentration of 4 µg/mL, it reduced the CLA minimum inhibitory concentration by 16-fold against the clinical isolate M. avium 2373 overexpressing EPs as primary mechanism of CLA resistance.

3.
J Chem Inf Model ; 62(24): 6309-6315, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36442071

RESUMO

The recent increase of bioactivity data freely available to the scientific community and stored as activity data points in chemogenomic repositories provides a huge amount of ready-to-use information to support the development of predictive models. However, the benefits provided by the availability of such a vast amount of accessible information are strongly counteracted by the lack of uniformity and consistency of data from multiple sources, requiring a process of integration and harmonization. While different automated pipelines for processing and assessing chemical data have emerged in the last years, the curation of bioactivity data points is a less investigated topic, with useful concepts provided but no tangible tools available. In this context, the present work represents a first step toward the filling of this gap, by providing a tool to meet the needs of end-user in building proprietary high-quality data sets for further studies. Specifically, we herein describe Q-raKtion, a systematic, semiautomated, flexible, and, above all, customizable KNIME workflow that effectively aggregates information on biological activities of compounds retrieved by two of the most comprehensive and widely used repositories, PubChem and ChEMBL.


Assuntos
Confiabilidade dos Dados , Fluxo de Trabalho
4.
J Enzyme Inhib Med Chem ; 35(1): 584-597, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31992093

RESUMO

NorA is the most studied efflux pump of Staphylococcus aureus and is responsible for high level resistance towards fluoroquinolone drugs. Although along the years many NorA efflux pump inhibitors (EPIs) have been reported, poor information is available about structure-activity relationship (SAR) around their nuclei and reliability of data supported by robust assays proving NorA inhibition. In this regard, we focussed efforts on the 2-phenylquinoline as a promising chemotype to develop potent NorA EPIs. Herein, we report SAR studies about the introduction of different aryl moieties on the quinoline C-2 position. The new derivative 37a showed an improved EPI activity (16-fold) with respect to the starting hit 1. Moreover, compound 37a exhibited a high potential in time-kill curves when combined with ciprofloxacin against SA-1199B (norA+). Also, 37a exhibited poor non-specific effect on bacterial membrane polarisation and showed an improvement in terms of "selectivity index" in comparison to 1.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Quinolinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Quinolinas/síntese química , Quinolinas/química , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade
5.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987835

RESUMO

Tackling antimicrobial resistance (AMR) represents a social responsibility aimed at renewing the antimicrobial armamentarium and identifying novel therapeutical approaches. Among the possible strategies, efflux pumps inhibition offers the advantage to contrast the resistance against all drugs which can be extruded. Efflux pump inhibitors (EPIs) are molecules devoid of any antimicrobial activity, but synergizing with pumps-substrate antibiotics. Herein, we performed an in silico scaffold hopping approach starting from quinolin-4-yloxy-based Staphylococcus aureus NorA EPIs by using previously built pharmacophore models for NorA inhibition activity. Four scaffolds were identified, synthesized, and modified with appropriate substituents to obtain new compounds, that were evaluated for their ability to inhibit NorA and synergize with the fluoroquinolone ciprofloxacin against resistant S. aureus strains. The two quinoline-4-carboxamide derivatives 3a and 3b showed the best results being synergic (4-fold MIC reduction) with ciprofloxacin at concentrations as low as 3.13 and 1.56 µg/mL, respectively, which were nontoxic for human THP-1 and A549 cells. The NorA inhibition was confirmed by SA-1199B ethidium bromide efflux and checkerboard assays against the isogenic pair SA-K2378 (norA++)/SA-K1902 (norA-). These in vitro results indicate the two compounds as valuable structures for designing novel S. aureus NorA inhibitors to be used in association with fluoroquinolones.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Quinolinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Células A549 , Antibacterianos/síntese química , Humanos , Quinolinas/síntese química , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade , Células THP-1
6.
Molecules ; 25(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151066

RESUMO

Despite great efforts have been made in the prevention and therapy of human immunodeficiency virus (HIV-1) infection, however the difficulty to eradicate latent viral reservoirs together with the emergence of multi-drug-resistant strains require the search for innovative agents, possibly exploiting novel mechanisms of action. In this context, the HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H), which is one of the few HIV-1 encoded enzymatic function still not targeted by any current drug, can be considered as an appealing target. In this work, we repurposed in-house anti-influenza derivatives based on the 1,2,4-triazolo[1,5-a]-pyrimidine (TZP) scaffold for their ability to inhibit HIV-1 RNase H function. Based on the results, a successive multi-step structural exploration around the TZP core was performed leading to identify catechol derivatives that inhibited RNase H in the low micromolar range without showing RT-associated polymerase inhibitory activity. The antiviral evaluation of the compounds in the MT4 cells showed any activity against HIV-1 (IIIB strain). Molecular modelling and mutagenesis analysis suggested key interactions with an unexplored allosteric site providing insights for the future optimization of this class of RNase H inhibitors.


Assuntos
Pirimidinas/química , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia , Sítios de Ligação , Desenho de Fármacos , Ativação Enzimática/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Ribonuclease H/antagonistas & inibidores , Ribonuclease H/química , Relação Estrutura-Atividade
7.
J Enzyme Inhib Med Chem ; 34(1): 55-74, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30362381

RESUMO

The paper focussed on a step-by-step structural modification of a cycloheptathiophene-3-carboxamide derivative recently identified by us as reverse transcriptase (RT)-associated ribonuclease H (RNase H) inhibitor. In particular, its conversion to a 2-aryl-cycloheptathienoozaxinone derivative and the successive thorough exploration of both 2-aromatic and cycloheptathieno moieties led to identify oxazinone-based compounds as new anti-RNase H chemotypes. The presence of the catechol moiety at the C-2 position of the scaffold emerged as critical to achieve potent anti-RNase H activity, which also encompassed anti-RNA dependent DNA polymerase (RDDP) activity for the tricyclic derivatives. Benzothienooxazinone derivative 22 resulted the most potent dual inhibitor exhibiting IC50s of 0.53 and 2.90 µM against the RNase H and RDDP functions. Mutagenesis and docking studies suggested that compound 22 binds two allosteric pockets within the RT, one located between the RNase H active site and the primer grip region and the other close to the DNA polymerase catalytic centre.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV/efeitos dos fármacos , Oxazinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonuclease H do Vírus da Imunodeficiência Humana/antagonistas & inibidores , Tiofenos/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Linhagem Celular , Relação Dose-Resposta a Droga , HIV/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxazinas/síntese química , Oxazinas/química , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Ribonuclease H do Vírus da Imunodeficiência Humana/metabolismo , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química
8.
Org Biomol Chem ; 15(37): 7944-7955, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28902220

RESUMO

Two facile and efficient one-step procedures for the regioselective synthesis of 7-aryl-5-methyl- and 5-aryl-7-methyl-2-amino-[1,2,4]triazolo[1,5-a]pyrimidines have been developed, via reactions of 3,5-diamino-1,2,4-triazole with variously substituted 1-aryl-1,3-butanediones and 1-aryl-2-buten-1-ones, respectively. The excellent yield and/or regioselectivity shown by the reactions decreased when ethyl 5-amino-1,2,4-triazole-3-carboxylate was used. [1,2,4]Triazolo[1,5-a]pyrimidine being a privileged scaffold, the procedures herein reported may be useful for the preparation of biologically active compounds. In this study, the preparation of a set of compounds based on the [1,2,4]triazolo[1,5-a]pyrimidine scaffold led to the identification of compound 20 endowed with a very promising ability to inhibit influenza virus RNA polymerase PA-PB1 subunit heterodimerization.


Assuntos
Pirimidinas/síntese química , Triazóis/síntese química , Animais , Sobrevivência Celular/efeitos dos fármacos , Cães , Relação Dose-Resposta a Droga , Células Madin Darby de Rim Canino/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Orthomyxoviridae/efeitos dos fármacos , Pirimidinas/química , Pirimidinas/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia , Replicação Viral/efeitos dos fármacos
9.
Antimicrob Agents Chemother ; 58(11): 6615-26, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25155603

RESUMO

The human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is a multifunctional factor essential for viral replication. IE2 modulates both viral and host gene expression, deregulates cell cycle progression, acts as an immunomodulator, and antagonizes cellular antiviral responses. Based on these facts, IE2 has been proposed as an important target for the development of innovative antiviral approaches. We previously identified the 6-aminoquinolone WC5 as a promising inhibitor of HCMV replication, and here, we report the dissection of its mechanism of action against the viral IE2 protein. Using glutathione S-transferase (GST) pulldown assays, mutagenesis, cell-based assays, and electrophoretic mobility shift assays, we demonstrated that WC5 does not interfere with IE2 dimerization, its interaction with TATA-binding protein (TBP), and the expression of a set of cellular genes that are stimulated by IE2. On the contrary, WC5 targets the regulatory activity exerted by IE2 on different responsive viral promoters. Indeed, WC5 blocked the IE2-dependent negative regulation of the major immediate-early promoter by preventing IE2 binding to the crs element. Moreover, WC5 reduced the IE2-dependent transactivation of a series of indicator constructs driven by different portions of the early UL54 gene promoter, and it also inhibited the transactivation of the murine CMV early E1 promoter by the IE3 protein, the murine cytomegalovirus (MCMV) IE2 homolog. In conclusion, our results indicate that the overall anti-HCMV activity of WC5 depends on its ability to specifically interfere with the IE2-dependent regulation of viral promoters. Importantly, our results suggest that this mechanism is conserved in murine CMV, thus paving the way for further preclinical evaluation in an animal model.


Assuntos
Aminoquinolinas/farmacologia , Antivirais/farmacologia , Citomegalovirus/crescimento & desenvolvimento , Proteínas Imediatamente Precoces/antagonistas & inibidores , Quinolonas/farmacologia , Replicação Viral/efeitos dos fármacos , Antígenos Virais , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Ciclina E/genética , Citomegalovirus/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética , Proteínas Virais/genética
10.
Bioorg Med Chem ; 22(17): 4658-66, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25127466

RESUMO

It is getting clearer that many drugs effective in different therapeutic areas act on multiple rather than single targets. The application of polypharmacology concepts might have numerous advantages especially for disease such as HIV/AIDS, where the rapid emergence of resistance requires a complex combination of more than one drug. In this paper, we have designed three hybrid molecules combining WM5, a quinolone derivative we previously identified as HIV Tat-mediated transcription (TMT) inhibitor, with the tricyclic core of nevirapine and BILR 355BS (BILR) non-nucleoside reverse transcriptase inhibitors (NNRTIs) to investigate whether it could be possible to obtain molecules acting on both transcription steps of the HIV replicative cycle. One among the three designed multiple ligands, reached this goal. Indeed, compound 1 inhibited both TMT and reverse transcriptase (RT) activity. Unexpectedly, while the anti-TMT activity exerted by compound 1 resulted into a selective inhibition of HIV-1 reactivation from latently infected OM10.1 cells, the anti-RT properties shown by all of the synthesized compounds did not translate into an anti-HIV activity in acutely infected cells. Thus, we have herein produced the proof of concept that the design of dual TMT-RT inhibitors is indeed possible, but optimization efforts are needed to obtain more potent derivatives.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV/efeitos dos fármacos , Quinolonas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Linhagem Celular , Relação Dose-Resposta a Droga , HIV/genética , Humanos , Ligantes , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
11.
J Med Chem ; 66(10): 6498-6522, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37134182

RESUMO

Synthetic lethality (SL) is an innovative strategy in targeted anticancer therapy that exploits tumor genetic vulnerabilities. This topic has come to the forefront in recent years, as witnessed by the increased number of publications since 2007. The first proof of concept for the effectiveness of SL was provided by the approval of poly(ADP-ribose)polymerase inhibitors, which exploit a SL interaction in BRCA-deficient cells, although their use is limited by resistance. Searching for additional SL interactions involving BRCA mutations, the DNA polymerase theta (POLθ) emerged as an exciting target. This review summarizes, for the first time, the POLθ polymerase and helicase inhibitors reported to date. Compounds are described focusing on chemical structure and biological activity. With the aim to enable further drug discovery efforts in interrogating POLθ as a target, we propose a plausible pharmacophore model for POLθ-pol inhibitors and provide a structural analysis of the known POLθ ligand binding sites.


Assuntos
DNA Polimerase Dirigida por DNA , Neoplasias , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Helicases/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Mutações Sintéticas Letais , Neoplasias/tratamento farmacológico , DNA Polimerase teta
12.
J Med Chem ; 66(2): 1301-1320, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36598465

RESUMO

We report [1,2,4]triazolo[3,4-b]benzothiazole (TBT) as a new inhibitor scaffold, which competes with nicotinamide in the binding pocket of human poly- and mono-ADP-ribosylating enzymes. The binding mode was studied through analogues and cocrystal structures with TNKS2, PARP2, PARP14, and PARP15. Based on the substitution pattern, we were able to identify 3-amino derivatives 21 (OUL243) and 27 (OUL232) as inhibitors of mono-ARTs PARP7, PARP10, PARP11, PARP12, PARP14, and PARP15 at nM potencies, with 27 being the most potent PARP10 inhibitor described to date (IC50 of 7.8 nM) and the first PARP12 inhibitor ever reported. On the contrary, hydroxy derivative 16 (OUL245) inhibits poly-ARTs with a selectivity toward PARP2. The scaffold does not possess inherent cell toxicity, and the inhibitors can enter cells and engage with the target protein. This, together with favorable ADME properties, demonstrates the potential of TBT scaffold for future drug development efforts toward selective inhibitors against specific enzymes.


Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Tanquirases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/química , Niacinamida/farmacologia , Desenvolvimento de Medicamentos , Benzotiazóis/farmacologia , Poli(ADP-Ribose) Polimerases , Proteínas Proto-Oncogênicas/metabolismo
13.
Bioorg Med Chem ; 20(2): 866-76, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22197397

RESUMO

Hepatitis C virus (HCV) infection has been recognized as the major cause of liver failure that can lead to hepatocellular carcinoma. Among all the HCV proteins, NS5B polymerase represents a leading target for drug discovery strategies. Herein, we describe our initial research efforts towards the identification of new chemotypes as allosteric NS5B inhibitors. In particular, the design, synthesis, in vitro anti-NS5B and in cellulo anti-HCV evaluation of a series of 1-oxo-1H-pyrido[2,1-b][1,3]benzothiazole-4-carboxylate derivatives are reported. Some of the newly synthesized compounds showed an IC(50) ranging from 11 to 23 µM, and molecular modeling and biochemical studies suggested that the thumb domain could be the target site for this new class of NS5B inhibitors.


Assuntos
Benzotiazóis/química , Hepacivirus/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Antivirais/farmacologia , Benzotiazóis/síntese química , Benzotiazóis/farmacologia , Sítios de Ligação , Linhagem Celular , Simulação por Computador , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Estrutura Terciária de Proteína , Software , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
14.
Curr Med Chem ; 29(8): 1379-1407, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-34042030

RESUMO

Viruses are a continuing threat to global health. The lack or limited therapeutic armamentarium against some viral infections and increasing drug resistance issues make the search for new antiviral agents urgent. In recent years, a growing literature highlighted the use of triazolopyrimidine (TZP) heterocycles in the development of antiviral agents, with numerous compounds that showed potent antiviral activities against different RNA and DNA viruses. TZP core represents a privileged scaffold for achieving biologically active molecules, thanks to: i) the synthetic feasibility that allows to variously functionalize TZPs in the different positions of the nucleus, ii) the ability of TZP core to establish multiple interactions with the molecular target, and iii) its favorable pharmacokinetic properties. In the present review, after mentioning selected examples of TZP-based compounds with varied biological activities, we will focus on those antivirals that appeared in the literature in the last 10 years. Approaches used for their identification, the hit-to-lead studies, and the emerged structure-activity relationship will be described. A mention of the synthetic methodologies to prepare TZP nuclei will also be given. In addition, their mechanism of action, the binding mode within the biological target, and pharmacokinetic properties will be analyzed, highlighting the strengths and weaknesses of compounds based on the TZP scaffold, which is increasingly used in medicinal chemistry.


Assuntos
Viroses , Vírus , Antivirais/química , Antivirais/farmacologia , Química Farmacêutica , Humanos , Relação Estrutura-Atividade
15.
Arch Oral Biol ; 144: 105550, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36191446

RESUMO

OBJECTIVE: To investigate the biological effects of electronic cigarette (e-cigarette) and heated tobacco product extracts respect to tobacco smoke extract on human gingival fibroblasts and human oral keratinocytes analysing cell viability, morphology, migration, apoptosis, cell cycle and epithelial-mesenchymal transition (EMT). DESIGN: Human gingival fibroblasts and human oral keratinocytes viability was analysed by MTT assay, cell morphology using scanning electron microscope (SEM) and cell migration by Scratch assay, a method that mimics the cell migration during wound healing in vivo. Apoptosis and cell cycle were analysed with flow cytometry and the related-gene expression of TP53, BCL2, CDKN2A and CDKN1A was indagated using real-time polymerase chain reaction. EMT process was analysed through expression of specific markers: CDH1, SNAI2, TWIST1, MMP2, FN1 and VIM. All investigations were evaluated after 24 h an in vitro exposure. RESULTS: Undiluted tobacco smoke extract induced significant inhibition of cell viability and cell migration, caused morphological alterations and induced an increase in cell death. No alterations or damage were observed after treatment with e-cigarette extracts. Heated tobacco product extract induced proliferation as highlighted by an increase of cell viability, cell migration and alterations of cycle analysis. CONCLUSIONS: Comparing the different cigarette extracts, tobacco smoke turns out to be the most harmful, e-cigarette did not determine morphological and functional alterations and heated tobacco product must be carefully investigated for its possible clinical effects on oral cell populations.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Poluição por Fumaça de Tabaco , Humanos , Nicotiana/efeitos adversos , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos
16.
Eur J Med Chem ; 237: 114362, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500474

RESUMO

While human poly-ADP-ribose chain generating poly-ARTs, PARP1 and 2 and TNKS1 and 2, have been widely characterized, less is known on the pathophysiological roles of the mono-ADP-ribosylating mono-ARTs, partly due to the lack of selective inhibitors. In this context, we have focused on the development of inhibitors for the mono-ART PARP10, whose overexpression is known to induce cell death. Starting from OUL35 (1) and its 4-(benzyloxy)benzamidic derivative (2) we herein report the design and synthesis of new analogues from which the cyclobutyl derivative 3c rescued cells most efficiently from PARP10 induced apoptosis. Most importantly, we also identified 2,3-dihydrophthalazine-1,4-dione as a new suitable nicotinamide mimicking PARP10 inhibitor scaffold. When it was functionalized with cycloalkyl (8a-c), o-fluorophenyl (8h), and thiophene (8l) rings, IC50 values in the 130-160 nM range were obtained, making them the most potent PARP10 inhibitors reported to date. These compounds also inhibited PARP15 with low micromolar IC50s, but none of the other tested poly- and mono-ARTs, thus emerging as dual mono-ART inhibitors. Compounds 8a, 8h and 8l were also able to enter cells and rescue cells from apoptosis. Our work sheds more light on inhibitor development against mono-ARTs and identifies chemical probes to study the cellular roles of PARP10 and PARP15.


Assuntos
ADP Ribose Transferases , Poli(ADP-Ribose) Polimerases , Apoptose , Morte Celular , Humanos , Luminol/análogos & derivados , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas
17.
Eur J Med Chem ; 241: 114656, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35963131

RESUMO

Antimicrobial resistance (AMR) represents a global health issue threatening our social lifestyle and the world economy. Efflux pumps are widely involved in AMR by playing a primary role in the development of specific mechanisms of resistance. In addition, they seem to be involved in the process of biofilm formation and maintenance, contributing to enhance the risk of creating superbugs difficult to treat. Accordingly, the identification of non-antibiotic molecules able to block efflux pumps, namely efflux pump inhibitors (EPIs), could be a promising strategy to counteract AMR and restore the antimicrobial activity of ineffective antibiotics. Herein, we enlarge the knowledge about the structure-activity relationship of 2-phenylquinoline Staphylococcus aureus NorA EPIs by reporting a new series of very potent C-6 functionalized derivatives. Best compounds significantly inhibited ethidium bromide efflux in a NorA-overexpressing S. aureus strain (SA-1199B) and strongly synergized at very low concentrations (0.20-0.78 µg/mL) with ciprofloxacin (CPX) against CPX-resistant S. aureus strains (SA-1199B and SA-K2378), as proved by checkerboard and time-kill experiments. In addition, some of these EPIs (9b and 10a) produced a post-antibiotic effect of 1.2 h and strongly enhanced antibiofilm activity of CPX against SA-1199B strain. Interestingly, at the concentrations used to reach synergy with CPX against resistant S. aureus strains, most of the EPI compounds did not show any human cell toxicity. Finally, by exploiting the recent released crystal structure of NorA, we observed that best EPI 9b highlighted a favourable docking pose, establishing some interesting interactions with key residues.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias , Biofilmes , Ciprofloxacina/farmacologia , Humanos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Plâncton/metabolismo , Staphylococcus aureus
18.
Pharmaceutics ; 14(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365115

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy whose prognosis is globally poor. In more than 60% of AML patients, the PI3K/AKTs/mTOR signaling pathway is aberrantly activated because of oncogenic driver alterations and further enhanced by chemotherapy as a mechanism of drug resistance. Against this backdrop, very recently we have started a multidisciplinary research project focused on AKT1 as a pharmacological target to identify novel anti-AML agents. Indeed, the serendipitous finding of the in-house compound T187 as an AKT1 inhibitor has paved the way to the rational identification of new active small molecules, among which T126 has emerged as the most interesting compound with IC50 = 1.99 ± 0.11 µM, ligand efficiency of 0.35, and a clear effect at low micromolar concentrations on growth inhibition and induction of apoptosis in AML cells. The collected results together with preliminary SAR data strongly indicate that the 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one derivative T126 is worthy of future biological experiments and medicinal chemistry efforts aimed at developing a novel chemical class of AKT1 inhibitors as anti-AML agents.

19.
ACS Med Chem Lett ; 13(5): 855-864, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35571875

RESUMO

A selection of compounds from a proprietary library, based on chemical diversity and various biological activities, was evaluated as potential inhibitors of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in a phenotypic-based screening assay. A compound based on a 2-phenylquinoline scaffold emerged as the most promising hit, with EC50 and CC50 values of 6 and 18 µM, respectively. The subsequent selection of additional analogues, along with the synthesis of ad hoc derivatives, led to compounds that maintained low µM activity as inhibitors of SARS-CoV-2 replication and lacked cytotoxicity at 100 µM. In addition, the most promising congeners also show pronounced antiviral activity against the human coronaviruses HCoV-229E and HCoV-OC43, with EC50 values ranging from 0.2 to 9.4 µM. The presence of a 6,7-dimethoxytetrahydroisoquinoline group at the C-4 position of the 2-phenylquinoline core gave compound 6g that showed potent activity against SARS-CoV-2 helicase (nsp13), a highly conserved enzyme, highlighting a potentiality against emerging HCoVs outbreaks.

20.
ACS Infect Dis ; 7(6): 1332-1350, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33044059

RESUMO

Influenza (flu) virus is a serious threat to global health with the potential to generate devastating pandemics. The availability of broad spectrum antiviral drugs is an unequaled weapon during pandemic events, especially when a vaccine is still not available. One of the most promising targets for the development of new antiflu therapeutics is the viral RNA-dependent RNA polymerase (RdRP). The assembly of the flu RdRP heterotrimeric complex from the individual polymerase acidic protein (PA), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) subunits is a prerequisite for RdRP functions, such as mRNA synthesis and genome replication. In this Review, we report the known protein-protein interactions (PPIs) occurring by RdRP that could be disrupted by small molecules and analyze their benefits and drawbacks as drug targets. An overview of small molecules able to interfere with flu RdRP functions exploiting the PPI inhibition approach is described. In particular, an update on the most recent inhibitors targeting the well-consolidated RdRP PA-PB1 subunit heterodimerization is mainly reported, together with pioneer inhibitors targeting other virus-virus or virus-host interactions involving RdRP subunits. As demonstrated by the PA-PB1 interaction inhibitors discussed herein, the inhibition of flu RdRP functions by PPI disrupters clearly represents a valid means to identify compounds endowed with a broad spectrum of action and a reduced propensity to develop drug resistance, which are the main issues of antiviral drugs.


Assuntos
Influenza Humana , Orthomyxoviridae , Antivirais/farmacologia , Humanos , RNA Polimerase Dependente de RNA/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa