RESUMO
Endothelial dysfunction is common in Systemic Lupus Erythematosus (SLE), even in the absence of cardiovascular disease. Evidence suggests that impaired mitophagy contributes to SLE. Mitochondrial dysfunction is also associated with impaired endothelial function. Spermidine, a natural polyamine, stimulates mitophagy by the PINK1-parkin pathway and counters age-associated endothelial dysfunction. However, the effect of spermidine on mitophagy and vascular function in SLE has not been explored. To address this gap, 9-week-old female lupus-prone (MRL/lpr) and healthy control (MRL/MpJ) mice were randomly assigned to spermidine treatment (lpr_Spermidine and MpJ_Spermidine) for 8 weeks or as control (lpr_Control and MpJ_Control). lpr_Control mice exhibited impaired endothelial function (e.g., decreased relaxation to acetylcholine), increased markers of inflammation, and lower protein content of parkin, a mitophagy marker, in the thoracic aorta. Spermidine treatment prevented endothelial dysfunction in MRL-lpr mice. Furthermore, aortas from lpr_Spermidine mice had lower levels of inflammatory markers and higher levels of parkin. Lupus phenotypes were not affected by spermidine. Collectively, these results demonstrate the beneficial effects of spermidine treatment on endothelial function, inflammation, and mitophagy in SLE mice. These results support future studies of the beneficial effects of spermidine on endothelial dysfunction and cardiovascular disease risk in SLE.
Assuntos
Endotélio Vascular , Lúpus Eritematoso Sistêmico , Camundongos Endogâmicos MRL lpr , Mitofagia , Espermidina , Animais , Espermidina/farmacologia , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/metabolismo , Camundongos , Feminino , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Mitofagia/efeitos dos fármacos , Modelos Animais de Doenças , Ubiquitina-Proteína Ligases/metabolismo , Inflamação/metabolismoRESUMO
Thoracic aortic aneurysm is found in patients with ACTA2 pathogenic variants. ACTA2 missense variants are associated with impaired aortic smooth muscle cell (SMC) contraction. This study tested the hypothesis that the Acta2R149C/+ variant alters actin isoform expression and decreases integrin recruitment, thus, reducing aortic contractility. Stress relaxation measurements in thoracic aortic rings showed two functional regimes with a reduction of stress relaxation in the aorta from Acta2R149C/+ mice at low tension, but not at high tension values. Contractile responses to phenylephrine and potassium chloride were 50% lower in Acta2R149C/+ mice than in wild-type (WT) mice. Additionally, SMC were immunofluorescently labeled for specific proteins and imaged by confocal or total internal reflection fluorescence microscopy. The quantification of protein fluorescence of Acta2R149C/+ SMC showed a downregulation in smooth muscle α-actin (SMα-actin) and a compensatory upregulation of smooth muscle γ-actin (SMγ-actin) compared to WT cells. These results suggest that downregulation of SMα-actin leads to reduced SMC contractility, while upregulation of SMγ-actin may lead to increased SMC stiffness. Decreased α5ß1 and α2ß1 integrin recruitment at cell-matrix adhesions further reduce the ability of mutant cells to participate in cell-matrix crosstalk. Collectively, the results suggest that mutant Acta2R149C/+ aortic SMC have reduced contractility and interaction with the matrix, which are potential long-term contributing factors to thoracic aortic aneurysms.
Assuntos
Actinas , Aneurisma da Aorta Torácica , Camundongos , Animais , Actinas/metabolismo , Integrinas/genética , Integrinas/metabolismo , Miócitos de Músculo Liso/metabolismo , Aneurisma da Aorta Torácica/metabolismo , Junções Célula-Matriz/metabolismo , Músculo Liso/metabolismoRESUMO
Vascular smooth muscle cells (VSMC) are now considered important contributors to the pathophysiological and biophysical mechanisms underlying arterial stiffening in aging. Here, we review mechanisms whereby VSMC stiffening alters vascular function and contributes to the changes in vascular stiffening observed in aging and cardiovascular disease. Vascular stiffening in arterial aging was historically associated with changes in the extracellular matrix; however, new evidence suggests that endothelial and vascular smooth muscle cell stiffness also contribute to overall blood vessel stiffness. Furthermore, VSMC play an integral role in regulating matrix deposition and vessel wall contractility via interaction between the actomyosin contractile unit and adhesion structures that anchor the cell within the extracellular matrix. Aged-induce phenotypic modulation of VSMC from a contractile to a synthetic phenotype is associated with decreased cellular contractility and increased cell stiffness. Aged VSMC also display reduced mechanosensitivity and adaptation to mechanical signals from their microenvironment due to impaired intracellular signaling. Finally, evidence for decreased contractility in arteries from aged animals demonstrate that changes at the cellular level result in decreased functional properties at the tissue level.
Assuntos
Músculo Liso Vascular , Rigidez Vascular , Envelhecimento , Animais , Matriz Extracelular , Miócitos de Músculo LisoRESUMO
The purpose of this study was to characterize the genetic contribution to endothelial adaptation to exercise training. Vasoreactivity was assessed in aortas from four inbred mouse strains (129S1, B6, NON, and SJL) after 4 weeks of moderate intensity continuous exercise training (MOD), high intensity interval training (HIT) or in sedentary controls (SED). Intrinsic variations in endothelium-dependent vasorelaxation (EDR) to acetylcholine (ACh) as well as vasocontractile responses were observed across SED groups. For responses to exercise training, there was a significant interaction between mouse strain and training intensity on EDR. Exercise training had no effect on EDR in aortas from 129S1 and B6 mice. In NON, EDR was improved in aortas from MOD and HIT compared with respective SED, accompanied by diminished responses to PE in those groups. Interestingly, EDR was impaired in aorta from SJL HIT compared with SED. The transcriptional activation of endothelial genes was also influenced by the interaction between mouse strain and training intensity. The number of genes altered by HIT was greater than MOD, and there was little overlap between genes altered by HIT and MOD. HIT was associated with gene pathways for inflammatory responses. NON MOD genes showed enrichment for vessel growth pathways. These findings indicate that exercise training has non-uniform effects on endothelial function and transcriptional activation of endothelial genes depending on the interaction between genetic background and training intensity.
RESUMO
Understanding the genetic influence on vascular reactivity is important for identifying genes underlying impaired vascular function. The purpose of this study was to characterize the genetic contribution to intrinsic vascular function and to identify loci associated with phenotypic variation in vascular reactivity in mice. Concentration response curves to phenylephrine (PE), potassium chloride (KCl), acetylcholine (ACh), and sodium nitroprusside (SNP) were generated in aortic rings from male mice (12 wk old) from 27 inbred mouse strains. Significant strain-dependent differences were found for both maximal responses and sensitivity for each agent, except for SNP Max (%). Strain differences for maximal responses to ACh, PE, and KCl varied by two- to fivefold. On the basis of these large strain differences, we performed genome-wide association mapping (GWAS) to identify loci associated with variation in responses to these agents. GWAS for responses to ACh identified four significant and 19 suggestive loci. Several suggestive loci for responses to SNP, PE, and KCl (including one significant locus for KCl EC50) were also identified. These results demonstrate that intrinsic endothelial function, and more generally vascular function, is genetically determined and associated with multiple genomic loci. Furthermore, these results are supported by the finding that several genes residing in significant and suggestive loci for responses to ACh were previously identified in rat and/or human quantitative trait loci/GWAS for cardiovascular disease. This study represents the first step toward the unbiased comprehensive discovery of genetic determinants that regulate intrinsic vascular function, particularly endothelial function.
Assuntos
Aorta/fisiologia , Endotélio Vascular/fisiologia , Vasodilatação/genética , Acetilcolina/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Camundongos Endogâmicos , Contração Miocárdica/efeitos dos fármacos , Nitroprussiato/farmacologia , Fenilefrina/farmacologia , Cloreto de Potássio/farmacologia , Locos de Características Quantitativas/genética , Vasodilatação/efeitos dos fármacosRESUMO
Introduction: Endothelial function is significantly impaired in patients with SLE compared to healthy controls. Elevated activation of the mammalian target of rapamycin complex 1 (mTORC1) is reported in humans and mice with SLE. However, it is unclear if elevated mTORC1 in SLE contributes to impaired mitophagy and endothelial dysfunction. Therefore, we tested the hypothesis that inhibiting mTORC1 with rapamycin would increase mitophagy and attenuate endothelial dysfunction and inflammatory responses in SLE. Methods: Nine-week-old female lupus-prone (MRL/lpr) and healthy control (MRL/MpJ) mice were randomly assigned into rapamycin treatment (lpr_Rapamycin and MpJ_Rapamycin) or control (lpr_Control and MpJ_Control) groups. Rapamycin was injected i.p. 3 days per week for 8 weeks. After 8 weeks, endothelium-dependent vasorelaxation to acetylcholine (ACh) and endothelium-independent vasorelaxation to sodium nitroprusside (SNP) were measured in thoracic aortas using a wire myograph. Results: MTORC1 activity was increased in aorta from lpr mice as demonstrated by increased phosphorylation of s6rp and p70s6k and significantly inhibited by rapamycin (s6rp, p < 0.0001, p70s6k, p = 0.04, respectively). Maximal responses to Ach were significantly impaired in lpr_Control (51.7% ± 6.6%) compared to MpJ_Control (86.7% ± 3.6%) (p < 0.0001). Rapamycin prevented endothelial dysfunction in the thoracic aorta from lupus mice (lpr_Rapamycin) (79.6% ± 4.2%) compared to lpr_Control (p = 0.002). Maximal responses to SNP were not different across groups. Phosphorylation of endothelial nitric oxide synthase also was 42% lower in lpr_Control than MpJ_Control and 46% higher in lpr_Rapamycin than lpr_Control. The inflammatory marker, vascular cell adhesion protein 1 (Vcam 1), was elevated in aorta from lupus mice compared with healthy mice (p = 0.001), and significantly reduced with Rapamycin treatment (p = 0.0021). Mitophagy markers were higher in lupus mice and reduced by rapamycin treatment, suggesting altered mitophagy in lpr mice. Conclusion: Collectively, these results demonstrate the beneficial effects of inhibiting mTORC1 on endothelial function in SLE mice and suggest inflammation and altered mitophagy contribute to endothelial dysfunction in SLE.
RESUMO
Smooth muscle cell-specific myosin heavy chain, encoded by MYH11, is selectively expressed in smooth muscle cells (SMCs). Pathogenic variants in MYH11 predispose to a number of disorders, including heritable thoracic aortic disease associated with patent ductus arteriosus, visceral myopathy, and megacystis-microcolon-intestinal hypoperistalsis syndrome. Rare variants of uncertain significance occur throughout the gene, including MYH11 p.Glu1892Asp, and we sought to determine if this variant causes thoracic aortic disease in mice. Genomic editing was used to generate Myh11 E1892D/E1892D mice. Wild-type (WT) and mutant mice underwent cardiovascular phenotyping and with transverse aortic constriction (TAC). Myh11 E1892D/E1892D and WT mice displayed similar growth, blood pressure, root and ascending aortic diameters, and cardiac function up to 13 months of age, along with similar contraction and relaxation on myographic testing. TAC induced hypertension similarly in Myh11 E1892D/E1892D and WT mice, but mutant mice showed augmented ascending aortic enlargement and increased elastic fragmentation on histology. Unexpectedly, male Myh11 E1892D/E1892D mice two weeks post-TAC had decreased ejection fraction, stroke volume, fractional shortening, and cardiac output compared to similarly treated male WT mice. Importantly, left ventricular mass increased significantly due to primarily posterior wall thickening, and cardiac histology confirmed cardiomyocyte hypertrophy and increased collagen deposition in the myocardium and surrounding arteries. These results further highlight the clinical heterogeneity associated with MYH11 rare variants. Given that MYH11 is selectively expressed in SMCs, these results implicate a role of vascular SMCs in the heart contributing to cardiac hypertrophy and failure with pressure overload.
RESUMO
The purpose of this study was to assess the influence of genetic background and sex on nitric oxide (NO)-mediated vasomotor function in arteries from different vascular territories. Vasomotor function was assessed in thoracic aorta, abdominal aorta, carotid arteries, and femoral arteries from the following mouse strains: SJL/J, DBA/2J, NZW/LacJ, and C57BL/6J. Contractile responses were assessed using the α1-adrenergic receptor agonist phenylephrine (PE, 10-9 -10-5 M). Vasorelaxation responses were assessed by examining relaxation to an endothelium-dependent vasodilator acetylcholine (ACh, 10-9 -10-5 M) and an endothelium-independent vasodilator sodium nitroprusside (SNP, 10-9 -10-5 M). To evaluate the role of NO, relaxation responses to ACh and SNP were assessed in the absence or presence of a nitric oxide synthase inhibitor (N omega-nitro-l-arginine methyl ester hydrochloride: 10-4 M). Vasomotor responses to ACh and PE varied across strains and among the arteries tested with some strains exhibiting artery-specific impairment. Results indicated some concentration-response heterogeneity in response to ACh and SNP between vessels from females and males, but no significant differences in responses to PE. Collectively, these findings indicate that vasomotor responses vary by genetic background, sex, and artery type.
Assuntos
Acetilcolina , Vasodilatadores , Camundongos , Masculino , Feminino , Animais , Camundongos Endogâmicos DBA , Camundongos Endogâmicos C57BL , Vasodilatadores/farmacologia , Acetilcolina/farmacologia , Vasodilatação/fisiologia , Artéria Femoral/fisiologia , Óxido Nítrico/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Patrimônio Genético , Endotélio Vascular/fisiologiaRESUMO
There are large interindividual differences in exercise capacity. It is well established that there is a genetic basis for these differences. However, the genetic factors underlying this variation are undefined. Therefore, the purpose of this study was to identify novel putative quantitative trait loci (QTL) for exercise capacity by measuring exercise capacity in inbred mice and performing genome-wide association mapping. Exercise capacity, defined as run time and work, was assessed in male mice (n = 6) from 34 strains of classical and wild-derived inbred mice performing a graded treadmill test. Genome-wide association mapping was performed with an efficient mixed-model association (EMMA) algorithm to identify QTL. Exercise capacity was significantly different across strains. Run time varied by 2.7-fold between the highest running strain (C58/J) and the lowest running strain (A/J). These same strains showed a 16.5-fold difference in work. Significant associations were identified for exercise time on chromosomes 1, 2, 7, 11, and 13. The QTL interval on chromosome 2 (~168 Mb) contains one gene, Nfatc2, and overlaps with a suggestive QTL for training responsiveness in humans. These results provide phenotype data on the widest range of inbred strains tested thus far and indicate that genetic background significantly influences exercise capacity. Furthermore, the novel QTLs identified in the current study provide new targets for investigating the underlying mechanisms for variation in exercise capacity.
Assuntos
Resistência Física/genética , Esforço Físico/genética , Locos de Características Quantitativas/genética , Análise de Variância , Animais , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Camundongos Endogâmicos , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
Inbred and genetically modified mice are frequently used to investigate the molecular mechanisms responsible for the beneficial adaptations to exercise training. However, published paradigms for exercise training in mice are variable, making comparisons across studies for training efficacy difficult. The purpose of this systematic review and meta-analysis was to characterize the diversity across published treadmill-based endurance exercise training protocols for mice and to identify training protocol parameters that moderate the adaptations to endurance exercise training in mice. Published studies were retrieved from PubMed and EMBASE and reviewed for the following inclusion criteria: inbred mice; inclusion of a sedentary group; and exercise training using a motorized treadmill. Fifty-eight articles met those inclusion criteria and also included a "classical" marker of training efficacy. Outcome measures included changes in exercise performance, V Ë O2max, skeletal muscle oxidative enzyme activity, blood lactate levels, or exercise-induced cardiac hypertrophy. The majority of studies were conducted using male mice. Approximately 48% of studies included all information regarding exercise training protocol parameters. Meta-analysis was performed using 105 distinct training groups (i.e., EX-SED pairs). Exercise training had a significant effect on training outcomes, but with high heterogeneity (Hedges' g=1.70, 95% CI=1.47-1.94, Tau2=1.14, I2 =80.4%, prediction interval=-0.43-3.84). Heterogeneity was partially explained by subgroup differences in treadmill incline, training duration, exercise performance test type, and outcome variable. Subsequent analyses were performed on subsets of studies based on training outcome, exercise performance, or biochemical markers. Exercise training significantly improved performance outcomes (Hedges' g=1.85, 95% CI=1.55-2.15). Subgroup differences were observed for treadmill incline, training duration, and exercise performance test protocol on improvements in performance. Biochemical markers also changed significantly with training (Hedges' g=1.62, 95% CI=1.14-2.11). Subgroup differences were observed for strain, sex, exercise session time, and training duration. These results demonstrate there is a high degree of heterogeneity across exercise training studies in mice. Training duration had the most significant impact on training outcome. However, the magnitude of the effect of exercise training varies based on the marker used to assess training efficacy.
RESUMO
BACKGROUND: The G-protein-coupled receptor kinase interacting protein-1 (GIT1) is a multidomain scaffold protein that participates in many cellular functions including receptor internalization, focal adhesion remodeling, and signaling by both G-protein-coupled receptors and tyrosine kinase receptors. However, there have been no in vivo studies of GIT1 function to date. METHODS AND RESULTS: To determine essential functions of GIT1 in vivo, we generated a traditional GIT1 knockout mouse. GIT1 knockout mice exhibited approximately 60% perinatal mortality. Pathological examination showed that the major abnormality in GIT1 knockout mice was impaired lung development characterized by markedly reduced numbers of pulmonary blood vessels and increased alveolar spaces. Given that vascular endothelial growth factor (VEGF) is essential for pulmonary vascular development, we investigated the role of GIT1 in VEGF signaling in the lung and cultured endothelial cells. Because activation of phospholipase-Cgamma (PLCgamma) and extracellular signal-regulated kinases 1/2 (ERK1/2) by angiotensin II requires GIT1, we hypothesized that GIT1 mediates VEGF-dependent pulmonary angiogenesis by modulating PLCgamma and ERK1/2 activity in endothelial cells. In cultured endothelial cells, knockdown of GIT1 decreased VEGF-mediated phosphorylation of PLCgamma and ERK1/2. PLCgamma and ERK1/2 activity in lungs from GIT1 knockout mice was reduced postnatally. CONCLUSIONS: Our data support a critical role for GIT1 in pulmonary vascular development by regulating VEGF-induced PLCgamma and ERK1/2 activation.
Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Neovascularização Fisiológica/fisiologia , Alvéolos Pulmonares/anormalidades , Artéria Pulmonar/anormalidades , Veias Pulmonares/anormalidades , Animais , Animais Recém-Nascidos , Divisão Celular/fisiologia , Células Cultivadas , DNA/biossíntese , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfolipase C gama/metabolismo , Fosforilação/fisiologia , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/fisiologia , Artéria Pulmonar/fisiologia , Circulação Pulmonar , Veias Pulmonares/fisiologia , Transdução de Sinais/fisiologia , Taxa de Sobrevida , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Aging is associated with impaired vascular function characterized in part by attenuated vasorelaxation to acetylcholine (ACh) and sodium nitroprusside (SNP). Due to structural and functional differences between conduit and resistance arteries, the effect of aging on vasorelaxation responses may vary along the arterial tree. Our purpose was to determine age-related differences in vasorelaxation responses in large and small arteries. Responses to the endothelium-dependent vasodilator acetylcholine (ACh) and the endothelium-independent vasodilator sodium nitroprusside (SNP) were assessed in abdominal aorta (AA), iliac arteries (IA), femoral arteries (FA), and gastrocnemius feed arteries (GFA) from young and old male rats. ACh-mediated vasorelaxation was significantly impaired in old AA and IA. SNP-mediated vasorelaxation was impaired in old AA. To investigate a potential mechanism for impaired relaxation responses in AA and IA, we assessed eNOS protein content and interactions with caveolin-1 (Cav-1), and calmodulin (CaM) via immunoprecipitation and immunoblot analysis. We found no age differences in eNOS content or interactions with Cav1 and CaM. Combined data from all rats revealed that eNOS content was higher in IA compared to AA and FA (p < .001), and was higher in GFA than AA (p < .05). Cav1:eNOS interaction was greater in FA than in AA and IA (p < .01), and in GFA compared to IA (p < .05). No differences in CaM:eNOS were detected. In conclusion, age-related impairment of vasorelaxation responses occurred in the large conduit, but not small conduit or resistance arteries. These detrimental effects of age were not associated with changes in eNOS or its interactions with Cav-1 or CaM.
Assuntos
Envelhecimento/fisiologia , Aorta Abdominal/fisiopatologia , Artéria Femoral/fisiopatologia , Artéria Ilíaca/fisiopatologia , Vasodilatação/fisiologia , Vasodilatadores/farmacologia , Acetilcolina/farmacologia , Envelhecimento/metabolismo , Animais , Aorta Abdominal/efeitos dos fármacos , Aorta Abdominal/metabolismo , Artérias/efeitos dos fármacos , Artérias/metabolismo , Artérias/fisiopatologia , Calmodulina/metabolismo , Caveolina 1/metabolismo , Artéria Femoral/efeitos dos fármacos , Artéria Femoral/metabolismo , Artéria Ilíaca/efeitos dos fármacos , Artéria Ilíaca/metabolismo , Masculino , Músculo Esquelético/irrigação sanguínea , Óxido Nítrico Sintase Tipo III/metabolismo , Nitroprussiato/farmacologia , Ratos , Vasodilatação/efeitos dos fármacosRESUMO
In this pilot work, we selected two inbred strains that respond well to endurance training (ET) (FVB/NJ, and SJL/J strains), and two strains that respond poorly (BALB/cByJ and NZW/LacJ), to determine the effect of a standardized ET treadmill program on mitochondrial and nuclear DNA (nucDNA) integrity, and mitochondrial DNA (mtDNA) copy number. DNA was isolated from plantaris muscles (n = 37) and a gene-specific quantitative PCR-based assay was used to measure DNA lesions and mtDNA copy number. Mean mtDNA lesions were not different within strains in the sedentary or exercise-trained states. However, mtDNA lesions were significantly higher in trained low-responding NZW/LacJ mice (0.24 ± 0.06 mtDNA lesions/10 Kb) compared to high-responding strains (mtDNA lesions/10 Kb: FVB/NJ = 0.11 ± 0.01, p = .049; SJL/J = 0.04 ± 0.02; p = .003). ET did not alter mean mtDNA copy numbers for any strain, although both sedentary and trained FVB/NJ mice had significantly higher mtDNA copies (99,890 ± 4,884 mtDNA copies) compared to low-responding strains (mtDNA copies: BALB/cByJ = 69,744 ± 4,675; NZW/LacJ = 65,687 ± 5,180; p < .001). ET did not change nucDNA lesions for any strain, however, SJL/J had the lowest mean nucDNA lesions (3.5 ± 0.14 nucDNA lesions/6.5 Kb) compared to all other strains (nucDNA lesions/6.5 Kb: FVB/NJ = 4.4 ± 0.11; BALB/cByJ = 4.7 ± 0.09; NZW/LacJ = 4.4 ± 0.11; p < .0001). Our results demonstrate strain differences in plantaris muscle mtDNA lesions in ET mice and, independent of condition, differences in mean mtDNA copy and nucDNA lesions between strains.
Assuntos
Variações do Número de Cópias de DNA , Dano ao DNA , DNA Mitocondrial/genética , Mitocôndrias/genética , Condicionamento Físico Animal , Animais , Treino Aeróbico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Especificidade da EspécieRESUMO
The genetic factors determining the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with adaptation to exercise training in a cross between FVB/NJ (FVB) and C57BL/6J (B6) mice. Mice completed an exercise performance test before and after a 4-wk treadmill running program, and changes in exercise capacity, expressed as work (kg.m), were calculated. Changes in work in F(2) mice averaged 1.51 +/- 0.08 kg.m (94.3 +/- 7.3%), with a range of -1.67 to +4.55 kg.m. All F(2) mice (n = 188) were genotyped at 20-cM intervals with 103 single nucleotide polymorphisms (SNPs), and genomewide linkage scans were performed for pretraining, posttraining, and change in work. Significant QTL for pretraining work were located on chromosomes 14 at 4.0 cM [3.72 logarithm of odds (LOD)] and 19 at 34.4 cM (3.63 LOD). For posttraining work significant QTL were located on chromosomes 3 at 60 cM (4.66 LOD) and 14 at 26 cM (4.99 LOD). Suggestive QTL for changes in work were found on chromosomes 11 at 44.6 cM (2.30 LOD) and 14 at 36 cM (2.25 LOD). When pretraining work was used as a covariate, a potential QTL for change in work was identified on chromosome 6 at 68 cM (3.56 LOD). These data indicate that one or more QTL determine exercise capacity and training responses in mice. Furthermore, these data suggest that the genes that determine pretraining work and training responses may differ.
Assuntos
Camundongos Endogâmicos/genética , Condicionamento Físico Animal , Locos de Características Quantitativas/genética , Animais , Peso Corporal/genética , Cruzamentos Genéticos , Feminino , Estudo de Associação Genômica Ampla , Coração/anatomia & histologia , Masculino , Camundongos , Tamanho do Órgão/genética , Análise de RegressãoRESUMO
OBJECTIVE: The G protein-coupled receptor (GPCR)-kinase2 interacting protein1 (GIT1) is a scaffold protein involved in angiotensin II (Ang II) signaling. Histone deacetylase-5 (HDAC5) has emerged as an important substrate of calcium/calmodulin-dependent protein kinase II (CamK II) in GPCR signaling. Here we investigated the hypothesis that Ang II-mediated vascular smooth muscle cell (VSMC) gene transcription involves GIT1-CamK II-dependent phosphorylation of HDAC5. METHODS AND RESULTS: Ang II rapidly stimulated phosphorylation of HDAC5 at Ser498 in VSMCs. Knockdown of GIT1 significantly decreased HDAC5 phosphorylation induced by Ang II. The involvement of Src, phospholipase gamma (PLCgamma), and CamK II in GIT1-mediated HDAC5 phosphorylation was demonstrated. The association of GIT1 and CamK II was constitutive but increased after stimulation with Ang II. Moreover, the interaction of GIT1 and CamK II through the ARF GTPase-activating protein (ARF-GAP) and coiled-coil domains of GIT1 was essential for the phosphorylation of HDAC5. Finally, knockdown of GIT1 decreased myocyte enhancer factor 2 transcriptional activity induced by Ang II. CONCLUSIONS: This study identifies a novel function for GIT1 as a mediator of Ang II-induced VSMC gene transcription via a Src-PLCgamma-CamK II-HDAC5 signaling pathway.
Assuntos
Angiotensina II/fisiologia , Proteínas de Ciclo Celular/metabolismo , Histona Desacetilases/metabolismo , Músculo Liso Vascular/metabolismo , Fosfoproteínas/metabolismo , Animais , Proteína Tirosina Quinase CSK , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Células Cultivadas , Humanos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Fosfolipase C gama/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Quinases/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Transfecção , Quinases da Família srcRESUMO
Quantitative trait loci for exercise capacity and training-induced changes in exercise capacity were identified previously on mouse Chromosome 14. The aim of this study was to further investigate the role of Chromosome 14 in exercise capacity and responses to training in mice. Exercise phenotypes were measured in chromosome substitution strain mice carrying Chromosome 14 from the PWD/PhJ donor strain on the genetic background of a host C57BL/6J (B6) strain (B6.PWD14). Eight week old female and male mice from both strains completed a graded exercise test to exhaustion to assess intrinsic or baseline exercise capacity. A separate group of 12-week old female and male mice, randomly assigned to sedentary control (SED) or exercise training (EX) groups, completed a graded exercise test before and after a 4-week exercise training period. EX mice completed a 4-week training program consisting of treadmill running 5 days/week, 60 min/day at a final intensity of approximately 65% of maximum. For intrinsic exercise capacity, exercise time and work were significantly greater in female and male B6.PWD14 than sex-matched B6 mice. In the training study, female B6.PWD14 mice had higher pre-training exercise capacity than B6 mice. In contrast, there were no significant differences for pre-training exercise capacity between male B6 and B6.PWD14 mice. There were no significant strain differences for responses to training. These data demonstrate that PWD/PhJ alleles on Chromosome 14 significantly affect intrinsic exercise capacity. Furthermore, these results support continued efforts to identify candidate genes on Chromosome 14 underlying variation in exercise capacity.
RESUMO
Recently, we showed that genetic factors determine flow-dependent vascular remodeling. Among five inbred mouse strains, the SJL strain developed the largest intima in response to low flow. Because SJL mice have a spontaneous mutation in superoxide dismutase 2 (SOD-2) we tested the hypothesis that strain-specific variations in vascular function are due to alterations in redox and nitric oxide (NO) pathways. Vasorelaxation to acetylcholine was significantly impaired in aortic rings from SJL compared to C3H or FVB mice (up to 40%). Relaxation to the endothelium-independent vasodilator sodium nitroprusside (SNP) in SJL mice was also significantly impaired at low concentrations, with decreases in sensitivity and maximal relaxation to SNP compared to C3H and FVB mice. Western blot analyses showed significantly decreased expression (approximately 40%) of eNOS, PKG and SOD-2 proteins in SJL vasculature compared to C3H. Intact aortas from SJL showed significantly increased nitrotyrosine and decreased SOD-2 expression compared to C3H by immunohistochemistry. Basal levels of superoxide in aortas from SJL were not significantly different than C3H as measured by dihydroethidine. In summary, relatively small alterations in redox (SOD-2) and NO pathways (eNOS and PKG) may contribute to significantly impaired vasorelaxation in SJL mice.
Assuntos
Aorta Torácica/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Superóxidos/metabolismo , Vasodilatação , Acetilcolina/farmacologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/enzimologia , Aorta Torácica/fisiopatologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiopatologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III , Nitroprussiato/farmacologia , Oxirredução , Fenilefrina/farmacologia , Cloreto de Potássio/farmacologia , Especificidade da Espécie , Superóxido Dismutase/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Vasoconstrição , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologiaRESUMO
Changes in cardiorespiratory fitness in response to a standardized exercise training protocol differ substantially between individuals. Results from cross-sectional, twin, and family studies indicate genetics contribute to individual differences in both baseline exercise capacity and the response to training. Exercise capacity and responses to training also vary between inbred strains of mice. However, such studies have utilized a limited number of inbred strains. Therefore, the aim of this study was to characterize exercise-training responses in a larger number of genetically diverse strains of inbred mice and estimate the contribution of genetic background to exercise training responses. Eight-week old male mice from 24 inbred strains (n = 4-10/strain) performed a graded exercise test before and after 4 weeks of exercise training. Before training, exercise capacity was significantly different between strains when expressed as time (range = 21-42 min) and work performed (range = 0.42-3.89 kg·m). The responses to training also were significantly different between strains, ranging from a decrease of 2.2 min in NON/ShiLtJ mice to an increase of 8.7 min in SWR/J mice. Changes in work also varied considerably between the lowest (-0.24 kg·m in NON/ShiLtJ) and highest (+2.30 kg·m in FVB/NJ) performing strains. Heart and skeletal muscle masses also varied significantly between strains. Two broad sense heritability estimates were calculated for each measure of exercise capacity and for responses to training. For change in run time, the intraclass correlation between mice within the same inbred strain (rI) was 0.58 and the coefficient of genetic determination (g2) was 0.41. Heritability estimates were similar for the change in work: rI = 0.54 and g2 = 0.37. In conclusion, these results indicate genetic background significantly influences responses to exercise training.
RESUMO
The endothelium plays an important role in the regulation of vasomotor tone and the maintenance of vascular integrity. Endothelial dysfunction, i.e., impaired endothelial dependent dilation, is a fundamental component of the pathogenesis of cardiovascular disease. Although endothelial dysfunction is associated with a number of cardiovascular disease risk factors, those risk factors are not the only determinants of endothelial dysfunction. Despite knowing many molecules involved in endothelial signaling pathways, the genetic contribution to endothelial function has yet to be fully elucidated. This mini-review summarizes current evidence supporting the genetic contribution to endothelial vasomotor function. Findings from population-based studies, association studies for candidate genes, and unbiased large genomic scale studies in humans and rodent models are discussed. A brief synopsis of the current studies addressing the genetic regulation of endothelial responses to exercise training is also included.
RESUMO
Genetic factors determining exercise capacity and the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with exercise training in mice. Based on marked differences in training responses in inbred NZW (-0.65 ± 1.73 min) and 129S1 (6.18 ± 3.81 min) mice, a reciprocal intercross breeding scheme was used to generate 285 F2 mice. All F2 mice completed an exercise performance test before and after a 4-week treadmill running program, resulting in an increase in exercise capacity of 1.54 ± 3.69 min (range = -10 to +12 min). Genome-wide linkage scans were performed for pre-training, post-training, and change in run time. For pre-training exercise time, suggestive QTL were identified on Chromosomes 5 (57.4 cM, 2.5 LOD) and 6 (47.8 cM, 2.9 LOD). A significant QTL for post-training exercise capacity was identified on Chromosome 5 (43.4 cM, 4.1 LOD) and a suggestive QTL on Chromosomes 1 (55.7 cM, 2.3 LOD) and 8 (66.1 cM, 2.2 LOD). A suggestive QTL for the change in run time was identified on Chromosome 6 (37.8 cM, 2.7 LOD). To identify shared QTL, this data set was combined with data from a previous F2 cross between B6 and FVB strains. In the combined cross analysis, significant novel QTL for pre-training exercise time and change in exercise time were identified on Chromosome 12 (54.0 cM, 3.6 LOD) and Chromosome 6 (28.0 cM, 3.7 LOD), respectively. Collectively, these data suggest that combined cross analysis can be used to identify novel QTL and narrow the confidence interval of QTL for exercise capacity and responses to training. Furthermore, these data support the use of larger and more diverse mapping populations to identify the genetic basis for exercise capacity and responses to training.