Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Eur J Neurosci ; 56(2): 3825-3838, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35658087

RESUMO

Place cells are cells that exhibit location-dependent responses; they have mostly been studied in the hippocampus. Place cells have also been reported in the rat claustrum, an underexplored paracortical region with extensive corto-cortical connectivity. It has been hypothesised that claustral neuronal responses are anchored to cortical visual inputs. We show rat claustral place cells remap when visual inputs are eliminated from the environment, and that this remapping is NMDA-receptor-dependent. Eliminating visual input decreases claustral delta-band oscillatory activity, increases theta-band oscillatory activity, and increases simultaneously recorded visual cortical activity. We conclude that, like the hippocampus, claustral place field remapping might be mediated by NMDA receptor activity, and is modulated by visual cortical inputs.


Assuntos
Claustrum , Células de Lugar , Córtex Visual , Animais , Gânglios da Base/fisiologia , Ratos , Receptores de N-Metil-D-Aspartato
2.
Eur J Neurosci ; 56(10): 5869-5887, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36089888

RESUMO

As the functional properties of a cortical area partly reflect its thalamic inputs, the present study compared collateral projections arising from various rostral thalamic nuclei that terminate across prefrontal (including anterior cingulate) and retrosplenial areas in the rat brain. Two retrograde tracers, fast blue and cholera toxin B, were injected in pairs to different combinations of cortical areas. The research focused on the individual anterior thalamic nuclei, including the interanteromedial nucleus, nucleus reuniens and the laterodorsal nucleus. Of the principal anterior thalamic nuclei, only the anteromedial nucleus contained neurons reaching both the anterior cingulate cortex and adjacent cortical areas (prefrontal or retrosplenial), though the numbers were modest. For these same cortical pairings (medial prefrontal/anterior cingulate and anterior cingulate/retrosplenial), the interanteromedial nucleus and nucleus reuniens contained slightly higher proportions of bifurcating neurons (up to 11% of labelled cells). A contrasting picture was seen for collaterals reaching different areas within retrosplenial cortex. Here, the anterodorsal nucleus, typically provided the greatest proportion of bifurcating neurons (up to 15% of labelled cells). While individual neurons that terminate in different retrosplenial areas were also found in the other thalamic nuclei, they were infrequent. Consequently, these thalamo-cortical projections predominantly arise from separate populations of neurons with discrete cortical termination zones, consistent with the transmission of segregated information and influence. Overall, two contrasting medial-lateral patterns of collateral projections emerged, with more midline nuclei, for example, nucleus reuniens and the interoanteromedial nucleus innervating prefrontal areas, while more dorsal and lateral anterior thalamic collaterals innervated retrosplenial cortex.


Assuntos
Giro do Cíngulo , Núcleos Talâmicos , Ratos , Animais , Núcleos Talâmicos/fisiologia , Tálamo , Córtex Cerebral/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Vias Neurais/fisiologia
3.
Neurobiol Learn Mem ; 185: 107525, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555510

RESUMO

Retrosplenial cortex (RSC) lies at the interface between sensory and cognitive networks in the brain and mediates between these, although it is not yet known how. It has two distinct subregions, granular (gRSC) and dysgranular (dRSC). The present study investigated how these subregions differ with respect to their electrophysiology and thalamic connectivity, as a step towards understanding their functions. The gRSC is more closely connected to the hippocampal formation, in which theta-band local field potential oscillations are prominent. We, therefore, compared theta-rhythmic single-unit activity between the two RSC subregions and found, mostly in gRSC, a subpopulation of non-directional cells with spiking activity strongly entrained by theta oscillations, suggesting a stronger coupling of gRSC to the hippocampal system. We then used retrograde tracers to test for differential inputs to RSC from the anteroventral thalamus (AV). We found that gRSC and dRSC differ in their afferents from two AV subfields: dorsomedial (AVDM) and ventrolateral (AVVL). Specifically: (1) as a whole AV projects more strongly to gRSC; (2) AVVL targets both gRSC and dRSC, while AVDM provides a selective projection to gRSC, (3) the gRSC projection is layer-specific: AVDM targets specifically gRSC superficial layers. These same AV projections are topographically organized with ventral AV neurons innervating rostral RSC and dorsal AV neurons innervating caudal RSC. These combined results suggest the existence of two distinct but interacting RSC subcircuits: one connecting AVDM to gRSC that may comprise part of the cognitive hippocampal system, and the other connecting AVVL to both RSC regions that may link hippocampal and perceptual regions. We suggest that these subcircuits are distinct to allow for differential weighting during integration of converging sensory and cognitive computations: an integration that may take place in thalamus, RSC, or both.


Assuntos
Córtex Cerebral/fisiologia , Giro do Cíngulo/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Animais , Eletroencefalografia , Giro do Cíngulo/anatomia & histologia , Masculino , Vias Neurais/anatomia & histologia , Ratos , Ritmo Teta/fisiologia
4.
Eur J Neurosci ; 49(12): 1649-1672, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30633830

RESUMO

Nucleus reuniens receives dense projections from both the hippocampus and the frontal cortices. Reflecting these connections, this nucleus is thought to enable executive functions, including those involving spatial learning. The mammillary bodies, which also support spatial learning, again receive dense hippocampal inputs, as well as lighter projections from medial frontal areas. The present study, therefore, compared the sources of these inputs to nucleus reuniens and the mammillary bodies. Retrograde tracer injections in rats showed how these two diencephalic sites receive projections from separate cell populations, often from adjacent layers in the same cortical areas. In the subiculum, which projects strongly to both sites, the mammillary body inputs originate from a homogenous pyramidal cell population in more superficial levels, while the cells that target nucleus reuniens most often originate from cells positioned at a deeper level. In these deeper levels, a more morphologically diverse set of subiculum cells contributes to the thalamic projection, especially at septal levels. While both diencephalic sites also receive medial frontal inputs, those to nucleus reuniens are especially dense. The densest inputs to the mammillary bodies appear to arise from the dorsal peduncular cortex, where the cells are mostly separate from deeper neurons that project to nucleus reuniens. Again, in those other cortical regions that innervate both nucleus reuniens and the mammillary bodies, there was no evidence of collateral projections. The findings support the notion that these diencephalic nuclei represent components of distinct, but complementary, systems that support different aspects of cognition.


Assuntos
Córtex Cerebral/citologia , Corpos Mamilares/citologia , Núcleos da Linha Média do Tálamo/citologia , Neurônios/citologia , Animais , Masculino , Técnicas de Rastreamento Neuroanatômico , Ratos
5.
Front Neuroanat ; 17: 1131167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152205

RESUMO

The dense fiber pathways that connect the insular cortex with frontal cortices are thought to provide these frontal areas with interoceptive information, crucial for their involvement in executive functions. Using anterograde neuroanatomical tracing, we mapped the detailed organization of the projections from the rat insular cortex to its targets in orbitofrontal (OFC) and medial prefrontal (mPFC) cortex. In OFC, main insular projections distribute to lateral and medial parts, avoiding ventral parts. Whereas projections from the primary gustatory cortex densely innervate dorsolateral OFC, likely corresponding to what in primates is known as the secondary gustatory cortex, these projections avoid mPFC. Instead, mPFC is targeted almost exclusively by projections from agranular fields of the insular cortex. Finally, "parietal" domains of the insular cortex project specifically to the dorsolateral OFC, and strongly innervate ventral portions of mPFC, i.e., the dorsal peduncular cortex.

6.
eNeuro ; 8(5)2021.
Artigo em Inglês | MEDLINE | ID: mdl-34301721

RESUMO

Both nucleus reuniens and the anterior thalamic nuclei are densely interconnected with medial cortical and hippocampal areas, connections that reflect their respective contributions to learning and memory. To better appreciate their comparative roles, pairs of different retrograde tracers were placed in these two thalamic sites in adult rats. Both thalamic sites receive modest cortical inputs from layer V that contrasted with much denser projections from layer VI. Despite frequent overlap in layer VI, ventral prefrontal and anterior cingulate inputs to nucleus reuniens were concentrated in the deepest sublayer (VIb). Meanwhile, inputs to the anterior thalamic nuclei originated more evenly from both sublayers VIa and VIb, with the result that they were often located more superficially than the projections to nucleus reuniens. Again, while the many hippocampal (subiculum) neurons projecting to nucleus reuniens and the anterior thalamic nuclei were partially intermingled within the deep cellular parts of the subiculum, cells projecting to nucleus reuniens consistently tended to lie even deeper (i.e., immediately adjacent to the alveus). Variable numbers of double-labeled cells were present in those cortical and subicular portions where the two cell populations intermingled, though they remained in a minority. Our data also show how projections to these two thalamic sites are organized in opposing dorsal/ventral and rostral/caudal gradients across both the cortex and hippocampal formation. While the anterior thalamic nuclei are preferentially innervated by dorsal cortical sites, more ventral frontal sites preferentially reach nucleus reuniens. These anatomic differences may underpin the complementary cognitive functions of these two thalamic areas.


Assuntos
Núcleos Anteriores do Tálamo , Núcleos da Linha Média do Tálamo , Animais , Hipocampo , Sistema Límbico , Vias Neurais , Ratos
7.
Neurosci Biobehav Rev ; 119: 268-280, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33069688

RESUMO

Two thalamic sites are of especial significance for understanding hippocampal - diencephalic interactions: the anterior thalamic nuclei and nucleus reuniens. Both nuclei have dense, direct interconnections with the hippocampal formation, and both are directly connected with many of the same cortical and subcortical areas. These two thalamic sites also contain neurons responsive to spatial stimuli while lesions within these two same areas can disrupt spatial learning tasks that are hippocampal dependent. Despite these many similarities, closer analysis reveals important differences in the details of their connectivity and the behavioural impact of lesions in these two thalamic sites. These nuclei play qualitatively different roles that largely reflect the contrasting relative importance of their medial frontal cortex interactions (nucleus reuniens) compared with their retrosplenial, cingulate, and mammillary body interactions (anterior thalamic nuclei). While the anterior thalamic nuclei are critical for multiple aspects of hippocampal spatial encoding and performance, nucleus reuniens contributes, as required, to aid cognitive control and help select correct from competing memories.


Assuntos
Núcleos Anteriores do Tálamo , Núcleos da Linha Média do Tálamo , Hipocampo , Humanos , Corpos Mamilares , Vias Neurais , Neurônios
8.
Brain Neurosci Adv ; 3: 2398212819871205, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31588413

RESUMO

The routes by which the hippocampal formation projects bilaterally to the anterior thalamic nuclei and mammillary bodies were examined in the mouse, rat, and macaque monkey. Despite using different methods and different species, the principal pattern remained the same. For both target areas, the contralateral hippocampal (subiculum) projections arose via efferents in the postcommissural fornix ipsilateral to the tracer injection, which then crossed hemispheres both in or just prior to reaching the target site within the thalamus or hypothalamus. Precommissural fornix fibres could not be followed to the target areas. There was scant evidence that the ventral hippocampal commissure or decussating fornix fibres contribute to these crossed subiculum projections. Meanwhile, a small minority of postsubiculum projections in the mouse were seen to cross in the descending fornix at the level of the caudal septum to join the contralateral postcommissural fornix before reaching the anterior thalamus and lateral mammillary nucleus on that side. Although the rodent anterior thalamic nuclei also receive nonfornical inputs from the subiculum and postsubiculum via the ipsilateral internal capsule, few, if any, of these projections cross the midline. It was also apparent that nuclei within the head direction system (anterodorsal thalamic nucleus, laterodorsal thalamic nucleus, and lateral mammillary nucleus) receive far fewer crossed hippocampal inputs than the other anterior thalamic or mammillary nuclei. The present findings increase our understanding of the fornix and its component pathways while also informing disconnection analyses involving the hippocampal formation and diencephalon.

9.
Sci Rep ; 9(1): 2865, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814651

RESUMO

Perimeters are an important part of the environment, delimiting its geometry. Here, we investigated how perimeters (vertical walls; vertical drops) affect neuronal responses in the rostral thalamus (the anteromedial and parataenial nuclei in particular). We found neurons whose firing patterns reflected the presence of walls and drops, irrespective of arena shape. Their firing patterns were stable across multiple sleep-wake cycles and were independent of ambient lighting conditions. Thus, rostral thalamic nuclei may participate in spatial representation by encoding the perimeters of environments.


Assuntos
Núcleos Anteriores do Tálamo , Núcleos da Linha Média do Tálamo , Neurônios , Transmissão Sináptica/fisiologia , Animais , Núcleos Anteriores do Tálamo/citologia , Núcleos Anteriores do Tálamo/fisiologia , Masculino , Núcleos da Linha Média do Tálamo/citologia , Núcleos da Linha Média do Tálamo/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Ratos
10.
Front Neuroanat ; 13: 53, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31213993

RESUMO

The claustrum is a subcortical nucleus that exhibits dense connectivity across the neocortex. Considerable recent progress has been made in establishing its genetic and anatomical characteristics, however, a core, contentious issue that regularly presents in the literature pertains to the rostral extent of its anatomical boundary. The present study addresses this issue in the rat brain. Using a combination of immunohistochemistry and neuroanatomical tract tracing, we have examined the expression profiles of several genes that have previously been identified as exhibiting a differential expression profile in the claustrum relative to the surrounding cortex. The expression profiles of parvalbumin (PV), crystallin mu (Crym), and guanine nucleotide binding protein (G protein), gamma 2 (Gng2) were assessed immunohistochemically alongside, or in combination with cortical anterograde, or retrograde tracer injections. Retrograde tracer injections into various thalamic nuclei were used to further establish the rostral border of the claustrum. Expression of all three markers delineated a nuclear boundary that extended considerably (∼500 µm) beyond the anterior horn of the neostriatum. Cortical retrograde and anterograde tracer injections, respectively, revealed distributions of cortically-projecting claustral neurons and cortical efferent inputs to the claustrum that overlapped with the gene marker-derived claustrum boundary. Finally, retrograde tracer injections into the thalamus revealed insular cortico-thalamic projections encapsulating a claustral area with strongly diminished cell label, that extended rostral to the striatum.

11.
Neuroscience ; 349: 128-143, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28237814

RESUMO

Dense reciprocal connections link the rat anterior thalamic nuclei with the prelimbic, anterior cingulate and retrosplenial cortices, as well as with the subiculum and postsubiculum. The present study compared the ipsilateral thalamic-cortical connections with the corresponding crossed, contralateral connections between these same sets of regions. All efferents from the anteromedial thalamic nucleus to the cortex, as well as those to the subiculum, remained ipsilateral. In contrast, all of these target sites provided reciprocal, bilateral projections to the anteromedial nucleus. While the anteroventral thalamic nucleus often shared this same asymmetric pattern of cortical connections, it received relatively fewer crossed inputs than the anteromedial nucleus. This difference was most marked for the anterior cingulate projections, as those to the anteroventral nucleus remained almost entirely ipsilateral. Unlike the anteromedial nucleus, the anteroventral nucleus also appeared to provide a restricted, crossed projection to the contralateral retrosplenial cortex. Meanwhile, the closely related laterodorsal thalamic nucleus had almost exclusively ipsilateral efferent and afferent cortical connections. Likewise, within the hippocampus, the postsubiculum seemingly had only ipsilateral efferent and afferent connections with the anterior thalamic and laterodorsal nuclei. While the bilateral cortical projections to the anterior thalamic nuclei originated predominantly from layer VI, the accompanying sparse projections from layer V largely gave rise to ipsilateral thalamic inputs. In testing a potentially unifying principle of anterior thalamic - cortical interactions, a slightly more individual pattern emerged that reinforces other evidence of functional differences within the anterior thalamic and also helps to explain the consequences of unilateral interventions involving these nuclei.


Assuntos
Córtex Cerebral/fisiologia , Hipocampo/fisiologia , Vias Neurais/fisiologia , Animais , Mapeamento Encefálico , Giro do Cíngulo/fisiologia , Núcleos Laterais do Tálamo/fisiologia , Masculino , Ratos , Núcleos Talâmicos/fisiologia
12.
J Comp Neurol ; 523(9): 1379-98, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25641117

RESUMO

The insular cortex is involved in the perception of interoceptive signals, coding of emotional and affective states, and processing information from gustatory, olfactory, auditory, somatosensory, and nociceptive modalities. This information represents an important component of episodic memory, mediated by the parahippocampal-hippocampal region. A comprehensive description of insular projections to the latter region is lacking. Previous studies reported that insular projections do not target any of the subdivisions in the hippocampal formation (the dentate gyus, the cornu ammonis [CA] fields 1, 2, and 3 and the subiculum), but, in contrast, target the parahippocampal region (perirhinal, postrhinal, lateral and medial entorhinal cortices, and pre- and parasubiculum). The present study examined the topographical and laminar organization of insular projections to the parahippocampal region in the rat with the use of anterograde tracing. Notably, our results corroborated the absence of hippocampal projections. We further showed that the perirhinal and the lateral entorhinal cortices received extensive projections from the insular cortex, primarily from its agranular areas. With the exception of a weak projection to the postrhinal cortex, projections to the remaining parahippocampal areas were either absent or very sparse. The projections to the lateral entorhinal cortex displayed a preference for the deep layers of its most lateral subdivisions, known also to receive hippocampal inputs. Projections to the perirhinal cortex primarily targeted the superficial layers with a preference for its ventral subdivision, referred to as area 35. Our findings indicate that only processed information, reflecting emotional and affective states, but not primary gustatory and viscerosensory information, has direct access to the parahippocampal-hippocampal system.


Assuntos
Córtex Cerebral/anatomia & histologia , Giro Para-Hipocampal/anatomia & histologia , Animais , Biotina/análogos & derivados , Dextranos , Córtex Entorrinal/anatomia & histologia , Feminino , Vias Neurais/anatomia & histologia , Técnicas de Rastreamento Neuroanatômico , Marcadores do Trato Nervoso , Fotomicrografia , Fito-Hemaglutininas , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa