Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 19(10): 1059-1070, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250186

RESUMO

Elucidation of how the differentiation of hematopoietic stem and progenitor cells (HSPCs) is reconfigured in response to the environment is critical for understanding the biology and disorder of hematopoiesis. Here we found that the transcription factors (TFs) Bach2 and Bach1 promoted erythropoiesis by regulating heme metabolism in committed erythroid cells to sustain erythroblast maturation and by reinforcing erythroid commitment at the erythro-myeloid bifurcation step. Bach TFs repressed expression of the gene encoding the transcription factor C/EBPß, as well as that of its target genes encoding molecules important for myelopoiesis and inflammation; they achieved the latter by binding to their regulatory regions also bound by C/EBPß. Lipopolysaccharide diminished the expression of Bach TFs in progenitor cells and promoted myeloid differentiation. Overexpression of Bach2 in HSPCs promoted erythroid development and inhibited myelopoiesis. Knockdown of BACH1 or BACH2 in human CD34+ HSPCs impaired erythroid differentiation in vitro. Thus, Bach TFs accelerate erythroid commitment by suppressing the myeloid program at steady state. Anemia of inflammation and myelodysplastic syndrome might involve reduced activity of Bach TFs.


Assuntos
Anemia/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Eritropoese/fisiologia , Anemia/etiologia , Animais , Diferenciação Celular/fisiologia , Células Eritroides/citologia , Células Eritroides/metabolismo , Humanos , Infecções/complicações , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndromes Mielodisplásicas/etiologia , Síndromes Mielodisplásicas/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34737234

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative movement disorder characterized by the loss of nigrostriatal dopaminergic neurons. Mounting evidence suggests that Nrf2 is a promising target for neuroprotective interventions in PD. However, electrophilic chemical properties of the canonical Nrf2-based drugs cause irreversible alkylation of cysteine residues on cellular proteins resulting in side effects. Bach1 is a known transcriptional repressor of the Nrf2 pathway. We report that Bach1 levels are up-regulated in PD postmortem brains and preclinical models. Bach1 knockout (KO) mice were protected against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity and associated oxidative damage and neuroinflammation. Functional genomic analysis demonstrated that the neuroprotective effects in Bach1 KO mice was due to up-regulation of Bach1-targeted pathways that are associated with both Nrf2-dependent antioxidant response element (ARE) and Nrf2-independent non-ARE genes. Using a proprietary translational technology platform, a drug library screen identified a substituted benzimidazole as a Bach1 inhibitor that was validated as a nonelectrophile. Oral administration of the Bach1 inhibitor attenuated MPTP neurotoxicity in pre- and posttreatment paradigms. Bach1 inhibitor-induced neuroprotection was associated with the up-regulation of Bach1-targeted pathways in concurrence with the results from Bach1 KO mice. Our results suggest that genetic deletion as well as pharmacologic inhibition of Bach1 by a nonelectrophilic inhibitor is a promising therapeutic approach for PD.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Neuroproteção , Doença de Parkinson/terapia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Idoso , Idoso de 80 Anos ou mais , Animais , Elementos de Resposta Antioxidante , Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina Básica/genética , Estudos de Casos e Controles , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Doença de Parkinson/metabolismo , Ratos
3.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673728

RESUMO

BTB and CNC homology 1 (BACH1) represses the expression of genes involved in the metabolism of iron, heme and reactive oxygen species. While BACH1 is rapidly degraded when it is bound to heme, it remains unclear how BACH1 degradation is regulated under other conditions. We found that FBXO22, a ubiquitin ligase previously reported to promote BACH1 degradation, polyubiquitinated BACH1 only in the presence of heme in a highly purified reconstitution assay. In parallel to this regulatory mechanism, TANK binding kinase 1 (TBK1), a protein kinase that activates innate immune response and regulates iron metabolism via ferritinophagy, was found to promote BACH1 degradation when overexpressed in 293T cells. While TBK1 phosphorylated BACH1 at multiple serine and threonine residues, BACH1 degradation was observed with not only the wild-type TBK1 but also catalytically impaired TBK1. The BACH1 degradation in response to catalytically impaired TBK1 was not dependent on FBXO22 but involved both autophagy-lysosome and ubiquitin-proteasome pathways judging from its suppression by using inhibitors of lysosome and proteasome. Chemical inhibition of TBK1 in hepatoma Hepa1 cells showed that TBK1 was not required for the heme-induced BACH1 degradation. Its inhibition in Namalwa B lymphoma cells increased endogenous BACH1 protein. These results suggest that TBK1 promotes BACH1 degradation in parallel to the FBXO22- and heme-dependent pathway, placing BACH1 as a downstream effector of TBK1 in iron metabolism or innate immune response.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Proteínas F-Box , Heme , Proteínas Serina-Treonina Quinases , Proteólise , Receptores Citoplasmáticos e Nucleares , Humanos , Heme/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Células HEK293 , Ubiquitinação , Linhagem Celular Tumoral , Lisossomos/metabolismo , Autofagia , Complexo de Endopeptidases do Proteassoma/metabolismo
4.
J Biol Chem ; 298(7): 102084, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35636512

RESUMO

Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient.


Assuntos
Metionina Adenosiltransferase , S-Adenosilmetionina , Animais , Humanos , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metionina/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Metilação , RNA Mensageiro/metabolismo , S-Adenosilmetionina/metabolismo
5.
Subcell Biochem ; 100: 67-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301491

RESUMO

The transcription factor BACH1, which is regulated by direct binding of prosthetic group heme, promotes epithelial-mesenchymal transition (EMT) and drives metastasis of diverse types of cancer cells. De-regulated target genes of BACH1 in cancer cells include those for glycolysis, oxidative phosphorylation, epithelial cell adhesion, and mesodermal cell motility. In addition, the canonical target genes of BACH1 include genes for the regulation of iron homeostasis. Importantly, cancer cells are addicted to iron. We summarize known functions of BACH1 in cancer and discuss how BACH1 may affect iron homeostasis in cancer cells to support their progression by increasing mobile iron within cells. The dependency on BACH1 for cancer progression may also confer upon cancer cells susceptibility to iron-dependent cell death ferroptosis. Finally, we discuss that the human transcription factors provide research opportunities for better understanding of cancer cell properties.


Assuntos
Ferro , Neoplasias , Humanos , Ferro/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Heme/química , Heme/metabolismo , Neoplasias/genética , Fatores de Transcrição/metabolismo , Homeostase
6.
J Biol Chem ; 297(3): 101032, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34339740

RESUMO

The progression of cancer involves not only the gradual evolution of cells by mutations in DNA but also alterations in the gene expression induced by those mutations and input from the surrounding microenvironment. Such alterations contribute to cancer cells' abilities to reprogram metabolic pathways and undergo epithelial-to-mesenchymal transition (EMT), which facilitate the survival of cancer cells and their metastasis to other organs. Recently, BTB and CNC homology 1 (BACH1), a heme-regulated transcription factor that represses genes involved in iron and heme metabolism in normal cells, was shown to shape the metabolism and metastatic potential of cancer cells. The growing list of BACH1 target genes in cancer cells reveals that BACH1 promotes metastasis by regulating various sets of genes beyond iron metabolism. BACH1 represses the expression of genes that mediate cell-cell adhesion and oxidative phosphorylation but activates the expression of genes required for glycolysis, cell motility, and matrix protein degradation. Furthermore, BACH1 represses FOXA1 gene encoding an activator of epithelial genes and activates SNAI2 encoding a repressor of epithelial genes, forming a feedforward loop of EMT. By synthesizing these observations, we propose a "two-faced BACH1 model", which accounts for the dynamic switching between metastasis and stress resistance along with cancer progression. We discuss here the possibility that BACH1-mediated promotion of cancer also brings increased sensitivity to iron-dependent cell death (ferroptosis) through crosstalk of BACH1 target genes, imposing programmed vulnerability upon cancer cells. We also discuss the future directions of this field, including the dynamics and plasticity of EMT.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Ferroptose , Neoplasias/patologia , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Progressão da Doença , Heme/metabolismo , Humanos , Metástase Neoplásica , Estresse Oxidativo , Relação Estrutura-Atividade
7.
J Biol Chem ; 295(1): 69-82, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740582

RESUMO

Ferroptosis is an iron-dependent programmed cell death event, whose regulation and physiological significance remain to be elucidated. Analyzing transcriptional responses of mouse embryonic fibroblasts exposed to the ferroptosis inducer erastin, here we found that a set of genes related to oxidative stress protection is induced upon ferroptosis. We considered that up-regulation of these genes attenuates ferroptosis induction and found that the transcription factor BTB domain and CNC homolog 1 (BACH1), a regulator in heme and iron metabolism, promotes ferroptosis by repressing the transcription of a subset of the erastin-induced protective genes. We noted that these genes are involved in the synthesis of GSH or metabolism of intracellular labile iron and include glutamate-cysteine ligase modifier subunit (Gclm), solute carrier family 7 member 11 (Slc7a11), ferritin heavy chain 1 (Fth1), ferritin light chain 1 (Ftl1), and solute carrier family 40 member 1 (Slc40a1). Ferroptosis has also been previously shown to induce cardiomyopathy, and here we observed that Bach1-/- mice are more resistant to myocardial infarction than WT mice and that the severity of ischemic injury is decreased by the iron-chelator deferasirox, which suppressed ferroptosis. Our findings suggest that BACH1 represses genes that combat labile iron-induced oxidative stress, and ferroptosis is stimulated at the transcriptional level by BACH1 upon disruption of the balance between the transcriptional induction of protective genes and accumulation of iron-mediated damage. We propose that BACH1 controls the threshold of ferroptosis induction and may represent a therapeutic target for alleviating ferroptosis-related diseases, including myocardial infarction.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ferroptose , Glutationa/metabolismo , Ferro/metabolismo , Infarto do Miocárdio/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Ferritinas/genética , Ferritinas/metabolismo , Fibroblastos/metabolismo , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Oxirredutases/genética , Oxirredutases/metabolismo , Ativação Transcricional
8.
J Immunol ; 200(8): 2882-2893, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29540581

RESUMO

BTB and CNC homology 2 (Bach2) is a transcriptional repressor that is required for the formation of the germinal center (GC) and reactions, including class switch recombination and somatic hypermutation of Ig genes in B cells, within the GC. Although BCR-induced proliferation is essential for GC reactions, the function of Bach2 in regulating B cell proliferation has not been elucidated. In this study, we demonstrate that Bach2 is required to sustain high levels of B cell proliferation in response to BCR signaling. Following BCR engagement in vitro, B cells from Bach2-deficient (Bach2-/-) mice showed lower incorporation of BrdU and reduced cell cycle progression compared with wild-type cells. Bach2-/- B cells also underwent increased apoptosis, as evidenced by an elevated frequency of sub-G1 cells and early apoptotic cells. Transcriptome analysis of BCR-engaged B cells from Bach2-/- mice revealed reduced expression of the antiapoptotic gene Bcl2l1 encoding Bcl-xL and elevated expression of cyclin-dependent kinase inhibitor (CKI) family genes, including Cdkn1a, Cdkn2a, and Cdkn2b Reconstitution of Bcl-xL expression partially rescued the proliferation defect of Bach2-/- B cells. Chromatin immunoprecipitation experiments showed that Bach2 bound to the CKI family genes, indicating that these genes are direct repression targets of Bach2. These findings identify Bach2 as a requisite factor for sustaining high levels of BCR-induced proliferation, survival, and cell cycle progression, and it promotes expression of Bcl-xL and repression of CKI genes. BCR-induced proliferation defects may contribute to the impaired GC formation observed in Bach2-/- mice.


Assuntos
Linfócitos B/imunologia , Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Ativação Linfocitária/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proliferação de Células , Proteínas Inibidoras de Quinase Dependente de Ciclina/imunologia , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos B/imunologia
9.
Proc Natl Acad Sci U S A ; 114(31): 8289-8294, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716939

RESUMO

Primordial germ cells (PGCs), undifferentiated embryonic germ cells, are the only cells that have the ability to become gametes and to reacquire totipotency upon fertilization. It is generally understood that the development of PGCs proceeds through the expression of germ cell-specific transcription factors and characteristic epigenomic changes. However, little is known about the properties of PGCs at the metabolite and protein levels, which are directly responsible for the control of cell function. Here, we report the distinct energy metabolism of PGCs compared with that of embryonic stem cells. Specifically, we observed remarkably enhanced oxidative phosphorylation (OXPHOS) and decreased glycolysis in embryonic day 13.5 (E13.5) PGCs, a pattern that was gradually established during PGC differentiation. We also demonstrate that glycolysis and OXPHOS are important for the control of PGC reprogramming and specification of pluripotent stem cells (PSCs) into PGCs in culture. Our findings about the unique metabolic property of PGCs provide insights into our understanding of the importance of distinct facets of energy metabolism for switching PGC and PSC status.


Assuntos
Células Germinativas Embrionárias/metabolismo , Células-Tronco Embrionárias/metabolismo , Metabolismo Energético/fisiologia , Glicólise/fisiologia , Fosforilação Oxidativa , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Células Germinativas Embrionárias/citologia , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteoma/análise
10.
Biochem J ; 475(5): 981-1002, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29459360

RESUMO

The transcription repressor BACH1 performs mutually independent dual roles in transcription regulation and chromosome alignment during mitosis by supporting polar ejection force of mitotic spindle. We now found that the mitotic spindles became oblique relative to the adhesion surface following endogenous BACH1 depletion in HeLa cells. This spindle orientation rearrangement was rescued by re-expression of BACH1 depending on its interactions with HMMR and CRM1, both of which are required for the positioning of mitotic spindle, but independently of its DNA-binding activity. A mass spectrometry analysis of BACH1 complexes in interphase and M phase revealed that BACH1 lost during mitosis interactions with proteins involved in chromatin and gene expression but retained interactions with HMMR and its known partners including CHICA. By analyzing BACH1 modification using stable isotope labeling with amino acids in cell culture, mitosis-specific phosphorylations of BACH1 were observed, and mutations of these residues abolished the activity of BACH1 to restore mitotic spindle orientation in knockdown cells and to interact with HMMR. Detailed histological analysis of Bach1-deficient mice revealed lengthening of the epithelial fold structures of the intestine. These observations suggest that BACH1 performs stabilization of mitotic spindle orientation together with HMMR and CRM1 in mitosis, and that the cell cycle-specific phosphorylation switches the transcriptional and mitotic functions of BACH1.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Cromossomos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Proteínas Quinases/metabolismo , Animais , Células HeLa , Humanos , Carioferinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose/genética , Fosforilação , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/fisiologia , Proteína Exportina 1
11.
Mod Rheumatol ; 29(1): 105-112, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29532704

RESUMO

OBJECTIVES: Patients with rheumatoid arthritis (RA) are at an increased risk of Mycobacterium avium complex pulmonary disease (MAC-PD). We aimed to identify factors associated with MAC-PD in RA patients, and investigate their clinical significance for diagnosis of this disease. METHODS: We examined 396 patients with RA for the presence of MAC-PD, using the criteria of the American Thoracic Society and conducted three years of follow-up on these patients. Multivariate logistic analyses were employed for selecting factors associated with MAC-PD. We developed a point system based on these factors which we call MAC-PD score to improve diagnosis of MAC-PD. RESULTS: During this study, 14 out of 396 patients were newly diagnosed with MAC-PD. Multivariate analyses revealed body mass index (BMI) <18.0 kg/m2 and lymphocyte count <1500/µl were associated with MAC-PD in RA patients. Points were assigned to them and totalled to provide the MAC-PD score. Among 20 patients with high-resolution computer tomography images consistent with MAC-PD, the scores were significantly higher in 14 patients with MAC-PD than those in six patients without MAC-PD. CONCLUSION: Using these data, in the forms of the MAC-PD score, could help to identify patients who should be considered for bronchoscopy more selectively.


Assuntos
Artrite Reumatoide , Linfopenia , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare , Tuberculose Pulmonar , Adulto , Idoso , Artrite Reumatoide/sangue , Artrite Reumatoide/complicações , Artrite Reumatoide/diagnóstico , Índice de Massa Corporal , Broncoscopia/métodos , Correlação de Dados , Feminino , Humanos , Japão , Linfopenia/diagnóstico , Linfopenia/etiologia , Masculino , Pessoa de Meia-Idade , Complexo Mycobacterium avium/isolamento & purificação , Complexo Mycobacterium avium/patogenicidade , Infecção por Mycobacterium avium-intracellulare/sangue , Infecção por Mycobacterium avium-intracellulare/complicações , Infecção por Mycobacterium avium-intracellulare/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/complicações , Tuberculose Pulmonar/diagnóstico
12.
J Biol Chem ; 292(19): 8019-8037, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28302717

RESUMO

The capacity of the liver to regenerate is likely to be encoded as a plasticity of molecular networks within the liver. By applying a combination of comprehensive analyses of the epigenome, transcriptome, and proteome, we herein depict the molecular landscape of liver regeneration. We demonstrated that histone H3 Lys-4 was trimethylated at the promoter regions of many loci, among which only a fraction, including cell-cycle-related genes, were transcriptionally up-regulated. A cistrome analysis guided by the histone methylation patterns and the transcriptome identified FOXM1 as the key transcription factor promoting liver regeneration, which was confirmed in vitro using a hepatocarcinoma cell line. The promoter regions of cell-cycle-related genes and Foxm1 acquired higher levels of trimethylated histone H3 Lys-4, suggesting that epigenetic regulations of these key regulatory genes define quiescence and regeneration of the liver cells. A quantitative proteome analysis of the regenerating liver revealed that conditional protein degradation also mediated regeneration-specific protein expression. These sets of informational resources should be useful for further investigations of liver regeneration.


Assuntos
Regulação da Expressão Gênica , Histonas/química , Regeneração Hepática , Fígado/metabolismo , RNA Mensageiro/metabolismo , Motivos de Aminoácidos , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Epigênese Genética , Proteína Forkhead Box M1/metabolismo , Neoplasias Hepáticas/metabolismo , Lisina/química , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Proteoma/metabolismo , Transcriptoma
13.
J Biol Chem ; 292(44): 18098-18112, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28916727

RESUMO

Pulmonary alveolar proteinosis (PAP) is a severe respiratory disease characterized by dyspnea caused by accumulation of surfactant protein. Dysfunction of alveolar macrophages (AMs), which regulate the homeostasis of surfactant protein, leads to the development of PAP; for example, in mice lacking BTB and CNC homology 2 (Bach2). However, how Bach2 helps prevent PAP is unknown, and the cell-specific effects of Bach2 are undefined. Using mice lacking Bach2 in specific cell types, we found that the PAP phenotype of Bach2-deficient mice is due to Bach2 deficiency in more than two types of immune cells. Depletion of hyperactivated T cells in Bach2-deficient mice restored normal function of AMs and ameliorated PAP. We also found that, in Bach2-deficient mice, hyperactivated T cells induced gene expression patterns that are specific to other tissue-resident macrophages and dendritic cells. Moreover, Bach2-deficient AMs exhibited a reduction in cell cycle progression. IFN-γ released from T cells induced Bach2 expression in AMs, in which Bach2 then bound to regulatory regions of inflammation-associated genes in myeloid cells. Of note, in AMs, Bach2 restricted aberrant responses to excessive T cell-induced inflammation, whereas, in T cells, Bach2 puts a brake on T cell activation. Moreover, Bach2 stimulated the expression of multiple histone genes in AMs, suggesting a role of Bach2 in proper histone expression. We conclude that Bach2 is critical for the maintenance of AM identity and self-renewal in inflammatory environments. Treatments targeting T cells may offer new therapeutic strategies for managing secondary PAP.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Proteinose Alveolar Pulmonar/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Biomarcadores/metabolismo , Linhagem da Célula , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Perfilação da Expressão Gênica , Heterozigoto , Pulmão/metabolismo , Pulmão/patologia , Ativação Linfocitária , Depleção Linfocítica , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteinose Alveolar Pulmonar/metabolismo , Proteinose Alveolar Pulmonar/patologia , Organismos Livres de Patógenos Específicos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
14.
J Biol Chem ; 292(39): 16284-16299, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28808058

RESUMO

ATP-binding cassette subfamily B member 10 (Abcb10) is a mitochondrial ATP-binding cassette (ABC) transporter that complexes with mitoferrin1 and ferrochelatase to enhance heme biosynthesis in developing red blood cells. Reductions in Abcb10 levels have been shown to reduce mitoferrin1 protein levels and iron import into mitochondria, resulting in reduced heme biosynthesis. As an ABC transporter, Abcb10 binds and hydrolyzes ATP, but its transported substrate is unknown. Here, we determined that decreases in Abcb10 did not result in protoporphyrin IX accumulation in morphant-treated zebrafish embryos or in differentiated Abcb10-specific shRNA murine Friend erythroleukemia (MEL) cells in which Abcb10 was specifically silenced with shRNA. We also found that the ATPase activity of Abcb10 is necessary for hemoglobinization in MEL cells, suggesting that the substrate transported by Abcb10 is important in mediating increased heme biosynthesis during erythroid development. Inhibition of 5-aminolevulinic acid dehydratase (EC 4.2.1.24) with succinylacetone resulted in both 5-aminolevulinic acid (ALA) accumulation in control and Abcb10-specific shRNA MEL cells, demonstrating that reductions in Abcb10 do not affect ALA export from mitochondria and indicating that Abcb10 does not transport ALA. Abcb10 silencing resulted in an alteration in the heme biosynthesis transcriptional profile due to repression by the transcriptional regulator Bach1, which could be partially rescued by overexpression of Alas2 or Gata1, providing a mechanistic explanation for why Abcb10 shRNA MEL cells exhibit reduced hemoglobinization. In conclusion, our findings rule out that Abcb10 transports ALA and indicate that Abcb10's ATP-hydrolysis activity is critical for hemoglobinization and that the substrate transported by Abcb10 provides a signal that optimizes hemoglobinization.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação Enzimológica da Expressão Gênica , Heme/biossíntese , Proteínas de Peixe-Zebra/metabolismo , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina Básica/genética , Embrião não Mamífero/enzimologia , Embrião não Mamífero/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Microinjeções , Morfolinos/metabolismo , Mutação , Interferência de RNA , RNA Interferente Pequeno , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
15.
Genes Cells ; 21(6): 553-67, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27030212

RESUMO

The transcription repressor BTB and CNC homology 1 (BACH1) represses genes involved in heme metabolism and oxidative stress response. BACH1 also suppresses the p53-dependent cellar senescence in primary mouse embryonic fibroblasts (MEFs). To investigate the role of BACH1 in MEF other than its known functions, we carried out a genomewide mapping of binding site for BACH1 and its heterodimer partner MAFK in immortalized MEFs (iMEFs) using chromatin immunoprecipitation and next-generation sequencing technology (ChIP-sequence). The comparative analysis of the ChIP-sequence data and DNA microarray data from Bach1-deficient and wild-type (WT) iMEF showed 35 novel candidate target genes of BACH1. Among these genes, five genes (Pparg, Nfia, Ptplad2, Adcy1 and Ror1) were related with lipid metabolism. Bach1-deficient iMEFs showed increased expression of mRNA and protein of PPARγ, which is the key factor of adipogenesis. These cells also showed a concomitant increase in ligand-dependent activation of PPARγ target genes compared with wild-type iMEFs. Moreover, Bach1-deficient iMEFs efficiently differentiated to adipocyte compared with wild-type cells in the presence of PPARγ ligands. Our results suggest that BACH1 regulates expression of adipocyte-related genes including Pparg and potentiates adipocyte differentiation capacity.


Assuntos
Adipogenia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Transdução de Sinais , Adipócitos/citologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Fator de Transcrição MafK/metabolismo , Camundongos , PPAR gama/genética
16.
Hum Genet ; 135(1): 89-98, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26597493

RESUMO

T2 hyperintensity of brain white matter lesions detected by magnetic resonance imaging (MRI) are characteristic of a heterogeneous group of diseases. Persistent T2 high intensity in combination with T1 iso- or high intensity of white matter in infants indicates a lack of normal myelination, that is, hypomyelination. However, the precise diagnosis of hypomyelinating leukodystrophy based solely on MRI findings can be difficult, especially in the early stage of the disease. We studied 26 patients who were diagnosed with hypomyelinating leukodystrophy according to MRI findings and clinical features to uncover their genetic etiology through chromosomal analyses, targeted gene analyses, and an array comparative genomic hybridization (aCGH) assay. Then, for the 17 patients with unexplained hypomyelination by traditional analyses, whole-exome sequencing (WES) was performed. The presumptive diagnoses were confirmed in 58 % of the enrolled patients (15/26) and involved 9 different genetic backgrounds. The most frequent backgrounds were 18q deletion syndrome and Pelizaeus-Merzbacher disease, with an incidence of 12 % (3/26) for both. The diagnostic rate of chromosomal analyses, targeted gene analyses, and aCGH was 31 % (8/26), and one patient was clinically diagnosed with Cockayne syndrome. Using WES, the following causative genes of hypomyelination were identified in six individuals (35 %, 6/17): TUBB4A, POLR3B, KCNT1, and MCOLN1, and some of those genes were pathogenic for not only hypomyelination but also dysmyelination or delayed myelination. Our findings suggested heterogeneous genetic backgrounds in patients with persistent white matter lesions. These data also indicate that WES may be a rapid and useful tool for identifying the underlying genetic causes of undiagnosed leukodystrophies.


Assuntos
Heterogeneidade Genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Adolescente , Criança , Pré-Escolar , Bandeamento Cromossômico , Hibridização Genômica Comparativa , Exoma , Feminino , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/diagnóstico , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino
17.
J Biol Chem ; 288(19): 13592-601, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23539621

RESUMO

BACKGROUND: MATII biosynthesizes AdoMet, which supplies methyl group for methylation of molecules, including histone. RESULTS: MATII interacts with histone methyltransferase SETDB1 and inhibits COX-2 gene expression. CONCLUSION: AdoMet synthesis and histone methylation are coupled on chromatin by a physical interaction of MATII and SETDB1 at the MafK target genes. SIGNIFICANCE: MATII may be important for both gene-specific and epigenome-wide regulation of histone methylation. Methionine adenosyltransferase (MAT) synthesizes S-adenosylmethionine (AdoMet), which is utilized as a methyl donor in transmethylation reactions involving histones. MATIIα, a MAT isozyme, serves as a transcriptional corepressor in the oxidative stress response and forms the AdoMet-integrating transcription regulation module, affecting histone methyltransferase activities. However, the identities of genes regulated by MATIIα or its associated methyltransferases are unclear. We show that MATIIα represses the expression of cyclooxygenase 2 (COX-2), encoded by Ptgs2, by specifically interacting with histone H3K9 methyltransferase SETDB1, thereby promoting the trimethylation of H3K9 at the COX-2 locus. We discuss both gene-specific and epigenome-wide functions of MATIIα.


Assuntos
Ciclo-Oxigenase 2/genética , Repressão Enzimática , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Metionina Adenosiltransferase/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Elementos Facilitadores Genéticos , Técnicas de Silenciamento de Genes , Inativação Gênica , Heme Oxigenase-1/genética , Humanos , Proteínas de Membrana/genética , Metionina Adenosiltransferase/genética , Metilação , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno/genética , Transcriptoma
18.
BMC Genomics ; 15: 673, 2014 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-25109789

RESUMO

BACKGROUND: Validation of single nucleotide variations in whole-genome sequencing is critical for studying disease-related variations in large populations. A combination of different types of next-generation sequencers for analyzing individual genomes may be an efficient means of validating multiple single nucleotide variations calls simultaneously. RESULTS: Here, we analyzed 12 independent Japanese genomes using two next-generation sequencing platforms: the Illumina HiSeq 2500 platform for whole-genome sequencing (average depth 32.4×), and the Ion Proton semiconductor sequencer for whole exome sequencing (average depth 109×). Single nucleotide polymorphism (SNP) calls based on the Illumina Human Omni 2.5-8 SNP chip data were used as the reference. We compared the variant calls for the 12 samples, and found that the concordance between the two next-generation sequencing platforms varied between 83% and 97%. CONCLUSIONS: Our results show the versatility and usefulness of the combination of exome sequencing with whole-genome sequencing in studies of human population genetics and demonstrate that combining data from multiple sequencing platforms is an efficient approach to validate and supplement SNP calls.


Assuntos
Exoma/genética , Genômica/instrumentação , Polimorfismo de Nucleotídeo Único , Semicondutores , Análise de Sequência de DNA/instrumentação , Composição de Bases , Feminino , Genoma Humano/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Reprodutibilidade dos Testes
19.
Cell Rep ; 43(7): 114403, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38943639

RESUMO

Ferroptosis is a type of regulated cell death characterized by iron-dependent lipid peroxidation. A model cell system is constructed to induce ferroptosis by re-expressing the transcription factor BACH1, a potent ferroptosis inducer, in immortalized mouse embryonic fibroblasts (iMEFs). The transfer of the culture supernatant from ferroptotic iMEFs activates the proliferation of hepatoma cells and other fibroblasts and suppresses cellular senescence-like features. The BACH1-dependent secretion of the longevity factor FGF21 is increased in ferroptotic iMEFs. The anti-senescent effects of the culture supernatant from these iMEFs are abrogated by Fgf21 knockout. BACH1 activates the transcription of Fgf21 by promoting ferroptotic stress and increases FGF21 protein expression by suppressing its autophagic degradation through transcriptional Sqstm1 and Lamp2 repression. The BACH1-induced ferroptotic FGF21 secretion suppresses obesity in high-fat diet-fed mice and the short lifespan of progeria mice. The inhibition of these aging-related phenotypes can be physiologically significant regarding ferroptosis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Senescência Celular , Ferroptose , Fatores de Crescimento de Fibroblastos , Obesidade , Animais , Ferroptose/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Obesidade/metabolismo , Obesidade/patologia , Camundongos , Longevidade , Humanos , Camundongos Endogâmicos C57BL , Fibroblastos/metabolismo , Autofagia , Dieta Hiperlipídica , Camundongos Knockout , Masculino , Proteína Sequestossoma-1/metabolismo
20.
J Biochem ; 174(3): 239-252, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37094356

RESUMO

Ferroptosis is a regulated cell death induced by iron-dependent lipid peroxidation. The heme-responsive transcription factor BTB and CNC homology 1 (BACH1) promotes ferroptosis by repressing the transcription of genes involved in glutathione (GSH) synthesis and intracellular labile iron metabolism, which are key regulatory pathways in ferroptosis. We found that BACH1 re-expression in Bach1-/- immortalized mouse embryonic fibroblasts (iMEFs) can induce ferroptosis upon 2-mercaptoethanol removal, without any ferroptosis inducers. In these iMEFs, GSH synthesis was reduced, and intracellular labile iron levels were increased upon BACH1 re-expression. We used this system to investigate whether the major ferroptosis regulators glutathione peroxidase 4 (Gpx4) and apoptosis-inducing factor mitochondria-associated 2 (Aifm2), the gene for ferroptosis suppressor protein 1, are target genes of BACH1. Neither Gpx4 nor Aifm2 was regulated by BACH1 in the iMEFs. However, we found that BACH1 represses AIFM2 transcription in human pancreatic cancer cells. These results suggest that the ferroptosis regulators targeted by BACH1 may vary across different cell types and animal species. Furthermore, we confirmed that the ferroptosis induced by BACH1 re-expression exhibited a propagating effect. BACH1 re-expression represents a new strategy for inducing ferroptosis after GPX4 or system Xc- suppression and is expected to contribute to future ferroptosis research.


Assuntos
Ferroptose , Fibroblastos , Animais , Humanos , Camundongos , Fibroblastos/metabolismo , Ferroptose/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ferro/metabolismo , Glutationa/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa