Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Langmuir ; 33(29): 7312-7321, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28474888

RESUMO

Under certain conditions, biological membranes exhibit resistance to solubilization, even at high detergent concentration. These insoluble fragments are enriched in sphingolipids, cholesterol, and certain proteins having a preference for more organized environments. Here we investigated the effect of detergent Triton X-100 (TX-100) on raft-like lipid mixtures composed of POPC (palmitoyl oleoyl phosphatidylcholine, an unsaturated lipid), SM (sphingomyelin, a saturated lipid), and cholesterol, focusing on the detergent-induced phase separation at subsolubilizing concentration and the extent of solubilization at higher concentration. Giant unilamellar vesicles (GUVs) of POPC/SM/chol containing a fluorescent probe known to prefer the liquid-disordered phase were prepared and observed with fluorescence microscopy. A phase diagram constructed in the presence and absence of 0.1 mM TX-100 showed that the detergent induces macroscopic liquid-ordered/liquid-disordered (Lo/Ld) phase separation over a wide range of membrane composition, indicating that TX-100 has the ability to rearrange the lateral heterogeneity of the lipid mixture. The extent of solubilization of the POPC/SM/chol GUVs was quantified by measuring the vesicle size before and after the injection of a high concentration of TX-100. In parallel, the solubilization extent of large unilamellar vesicles (LUVs) was assessed by turbidity measurements. The extent of solubilization decreases significantly as the fractions of SM and cholesterol in the mixture increase. The origin of the detergent resistance is the low partitioning of TX-100 in cholesterol-rich membranes, especially in SM-containing ones, as evidenced by isothermal titration calorimetry experiments on LUVs. Our results provide a guide to future research on the effects of TX-100 on raft-like lipid mixtures.


Assuntos
Octoxinol/química , Colesterol , Detergentes , Bicamadas Lipídicas , Microdomínios da Membrana , Fosfatidilcolinas , Esfingomielinas
2.
Langmuir ; 32(2): 577-86, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26677726

RESUMO

The intracellular delivery of nucleic acids requires a vector system as they cannot diffuse across lipid membranes. Although polymeric transfecting agents have been extensively investigated, none of the proposed gene delivery vehicles fulfill all of the requirements needed for an effective therapy, namely, the ability to bind and compact DNA into polyplexes, stability in the serum environment, endosome-disrupting capacity, efficient intracellular DNA release, and low toxicity. The challenges are mainly attributed to conflicting properties such as stability vs efficient DNA release and toxicity vs efficient endosome-disrupting capacity. Accordingly, investigations aimed at safe and efficient therapies are still essential to achieving gene therapy clinical success. Taking into account the mentioned issues, herein we have evaluated the DNA condensation ability of poly(ethylene oxide)113-b-poly[2-(diisopropylamino)ethyl methacrylate]50 (PEO113-b-PDPA50), poly(ethylene oxide)113-b-poly[2-(diethylamino)ethyl methacrylate]50 (PEO113-b-PDEA50), poly[oligo(ethylene glycol)methyl ether methacrylate]70-b-poly[oligo(ethylene glycol)methyl ether methacrylate10-co-2-(diethylamino)ethyl methacrylate47-co-2-(diisopropylamino)ethyl methacrylate47] (POEGMA70-b-P(OEGMA10-co-DEA47-co-DPA47), and poly[oligo(ethylene glycol)methyl ether methacrylate]70-b-poly{oligo(ethylene glycol)methyl ether methacrylate10-co-2-methylacrylic acid 2-[(2-(dimethylamino)ethyl)methylamino]ethyl ester44} (POEGMA70-b-P(OEGMA10-co-DAMA44). Block copolymers PEO113-b-PDEA50 and POEGMA70-b-P(OEGMA10-co-DEA47-co-DPA47) were evidenced to properly condense DNA into particles with a desirable size for cellular uptake via endocytic pathways (R(H) ≈ 65-85 nm). The structure of the polyplexes was characterized in detail by scattering techniques and atomic force microscopy. The isothermal titration calorimetric data revealed that the polymer/DNA binding is endothermic; therefore, the process in entropically driven. The combination of results supports that POEGMA70-b-P(OEGMA10-co-DEA47-co-DPA47) condenses DNA more efficiently and with higher thermodynamic outputs than does PEO113-b-PDEA50. Finally, circular dichroism spectroscopy indicated that the conformation of DNA remained the same after complexation and that the polyplexes are very stable in the serum environment.


Assuntos
DNA/química , Técnicas de Transferência de Genes , Metacrilatos/química , Polietilenoglicóis/química , Ácidos Polimetacrílicos/química , Calorimetria , Endocitose , Humanos , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Termodinâmica
3.
Langmuir ; 31(1): 378-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25474726

RESUMO

The solubilization of lipid bilayers of different composition and phase by the detergent Triton X-100 (Triton X-100) was investigated using optical and fluorescence microscopy of giant unilamellar vesicles (GUVs) and light scattering of large unilamellar vesicles (LUVs). The compositions explored were 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), in the liquid-disordered (Ld) phase, sphingomyelin (SM), in the gel phase, and binary mixtures of these phospholipids with 30 mol % cholesterol (chol), resulting in bilayers in the Ld and liquid-ordered (Lo) phases, respectively. We show that the phospholipid bilayers are completely soluble in TX-100, but optical microscopy reveals that whereas fluid POPC is gradually solubilized by TX-100, gel SM is first shattered in bilayer fragments. Incorporation of TX-100 in the membrane leads to increase in GUV area, which was quantified and expressed as bound detergent-to-lipid molar ratio. The partition of TX-100 in POPC is very high, decreases in POPC/chol, and is negligible in SM/chol. Fluorescence microscopy shows that TX-100 induces Lo/Ld phase separation in previously homogeneous POPC/chol GUVs, and insoluble bilayer fragments/vesicles are detected with optical microscopy and light scattering. Vesicles of SM/chol, in the Lo phase, are virtually insoluble in TX-100. Taken together, our results show that the presence of cholesterol is the origin of membrane resistance to solubilization, which depending on the specific lipid mixture can result in either partially (POPC/chol) or completely (SM/chol) insoluble mixtures.


Assuntos
Colesterol/química , Lipídeos/classificação , Octoxinol/química , Lipídeos/química , Microscopia de Fluorescência , Solubilidade
4.
Langmuir ; 30(12): 3513-21, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24606158

RESUMO

Antimicrobial peptides are part of the innate immune system of animals and plants. Their lytic activity against microorganisms generally depends on their ability to disrupt and permeabilize membranes. Here we study the structure-activity relationship of the antimicrobial peptide gomesin (Gm), from the spider Acanthoscurria gomesiana, with large unilamellar vesicles (LUVs) composed of 3:7 palmitoyloleoyl phosphatidylglycerol: palmitoyloleoyl phosphatidylcholine. Several synthetic analogues of Gm were designed to alter the hydrophobicity/charge of the molecule, whereby selected amino acid residues were replaced by alanine. Isothermal titration calorimetry (ITC) was used to assess the thermodynamic parameters of peptide binding to LUVs and light scattering measurements were made to evaluated peptide-induced vesicle aggregation. The ability of the peptides to permeabilize vesicles was quantified through the leakage of an entrapped fluorescent probe. The activity of peptides could be quantified in terms of the leakage extent induced and their affinity to the membrane, which was largely dictated by the exothermic enthalpy change. The results show that analogues more hydrophobic than Gm display higher activity, whereas peptides more hydrophilic than Gm have their activity almost abolished. Vesicle aggregation, on the other hand, largely increases with peptide charge. We conclude that interaction of Gm with membranes depends on an interplay between surface electrostatic interactions, which drive anchoring to the membrane surface and vesicle aggregation, and insertion of the hydrophobic portion into the membrane core, responsible for causing membrane rupture/permeabilization.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Animais , Peptídeos Catiônicos Antimicrobianos/síntese química , Calorimetria , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Aranhas , Eletricidade Estática , Relação Estrutura-Atividade , Propriedades de Superfície , Termodinâmica
5.
Langmuir ; 30(32): 9770-9, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25068509

RESUMO

The development of nanocarriers for biomedical applications requires that these nanocarriers have special properties, including resistance to nonspecific protein adsorption. In this study, the fouling properties of PLA- and PCL-based block copolymer nanoparticles (NPs) have been evaluated by placing them in contact with model proteins. Block copolymer NPs were produced through the self-assembly of PEOm-b-PLAn and PEOm-b-PCLn. This procedure yielded nanosized objects with distinct structural features dependent on the length of the hydrophobic and hydrophilic blocks and the volume ratio. The protein adsorption events were examined in relation to size, chain length, surface curvature, and hydrophilic chain density. Fouling by BSA and lysozyme was considerably reduced as the length of the hydrophilic PEO-stabilizing shell increases. In contrast to the case of hydrophilic polymer-grafted planar surfaces, the current investigations suggest that the hydrophilic chain density did not markedly influence protein fouling. The protein adsorption took place at the outer surface of the NPs since neither BSA nor lysozyme was able to diffuse within the hydrophilic layer due to geometric restrictions. Protein binding is an exothermic process, and it is modulated mainly by polymer features. The secondary structures of BSA and lysozyme were not affected by the adhesion phenomena.


Assuntos
Materiais Biocompatíveis/química , Nanopartículas/química , Proteínas/química , Adsorção
6.
Langmuir ; 29(27): 8609-18, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23755822

RESUMO

Gomesin is a potent cationic antimicrobial peptide (z = +6) isolated from the Brazilian spider Acanthoscurria gomesiana . The interaction of gomesin with large unilamellar vesicles composed of a 1:1 mixture of zwitterionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and anionic (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) phospholipids is studied with isothermal titration calorimetry (ITC). In parallel, light scattering and optical microscopy are used to assess peptide-induced vesicle aggregation. The ability of gomesin to permeabilize the membrane is examined with fluorescence spectroscopy of the leakage of 5,6-carboxyfluorescein (CF). Vesicles coated with 3 mol % 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (PE-PEG) lipids are also investigated to assess the influence of peptide-induced vesicle aggregation in the activity of gomesin. The ITC and light scattering titrations are done in two ways: lipid into peptide and peptide into lipid injections. Although some differences arise between the two setups, the basic interaction of gomesin with anionic vesicles is preserved. A surface partition model combined with the Gouy-Chapman theory is put forward to fit the ITC results. The intrinsic binding constant of gomesin is found to be K ≈ 10(3) M(-1). The interaction of gomesin with anionic membranes is highly exothermic and enthalpy-driven. Binding of gomesin is virtually always accompanied by vesicle aggregation and changes in membrane permeability, leading to CF leakage. Addition of PE-PEG to the membrane strongly attenuates vesicle aggregation but does not significantly change the mode of action of gomesin. The results point to a strong interaction of gomesin with the membrane surface, causing membrane rupture without a deep penetration into the bilayer core.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Fosfatidilcolinas/química , Fosfolipídeos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Calorimetria , Modelos Moleculares , Tamanho da Partícula , Propriedades de Superfície
7.
J Proteomics ; 217: 103651, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31972344

RESUMO

The Asian invasive species Limnoperna fortunei (Dunker, 1857), known as the golden mussel, causes great economic and environmental damage due to its fixative capacity and accelerated proliferation. Molecular studies for the control of larval and adult forms are of great economic, scientific and technological interest. Here, we first report on the compositional analysis of the L. fortunei proteome obtained through shotgun analysis using LC-MS/MS. Among those 2790 proteins identified, many of them related to secretory processes and membrane receptors. Our second approach consisted in exposing the mollusc to the molluscicide niclosamide to evaluate the induced proteomic alterations. Exposure to niclosamide at 0.25 mg/L for 24 h resulted in a pronounced differential abundance of proteins when compared to those obtained when exposure was reduced to 4 h at 2.3 mg/L. In total, 342 proteins were found differentially expressed in the responsive individuals as revealed by label-free quantitative proteomics. Regarding the affected cell processes were: cell division and differentiation, cytoskeletal organization and compartment acidification (upregulated), and energy metabolism (downregulated). Our findings constitute the first inventory of the expressed proteome of the golden mussel and have the potential to contribute with a more rational proposition of molecular targets for control and monitoring of this species. SIGNIFICANCE: With the recent availability of transcriptomic and genomic data applied to L. fortunei the timing is right to interrogate its putative gene repertoire using proteomic techniques. These have the potential to validate the existence of the predicted genes, infer their relative abundance and quantify their levels as a response to environmental stressors or various agents. Here we provided an inventory of the golden mussel proteome and evaluated its response to the molluscicide niclosamide. The obtained results open new avenues for intervention aimed at its control or elimination, particularly by targeting the various cellular processes that were uncovered.


Assuntos
Niclosamida , Proteoma , Animais , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem
8.
Int J Pharm ; 576: 118997, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31893542

RESUMO

Cardiovascular diseases (CVD) are the leading cause of death worldwide. Growth factor therapy has emerged as novel therapeutic strategy under investigation for CVD. In this sense, adrenomedullin-2 (ADM-2) has been recently identified as a new angiogenic factor able to regulate the regional blood flow and cardiovascular function. However, the therapeutic value of ADM-2 is limited by its short biological half-life and low plasma stability. Poly (lactic-co-glycolic acid) (PLGA) micro- and nanoparticles have been investigated as growth factor delivery systems for cardiac repair. In this study, we aimed to develop PLGA nanoparticles containing ADM-2 intended for therapeutic angiogenesis. PLGA nanoparticles containing ADM-2 were prepared by a double emulsion modified method, resulting in 300 nm-sized stable particles with zeta potential around - 30 mV. Electron microscopy analysis by SEM and TEM revealed spherical particles with a smooth surface. High encapsulation efficiency was reached (ca.70%), as quantified by ELISA. ADM-2 associated to polymer nanoparticles was also determined by EDS elemental composition analysis, SDS-PAGE and LC-MS/MS for peptide identification. In vitro release assays showed the sustained release of ADM-2 from polymer nanoparticles for 21 days. Cell viability experiments were performed in J774 macrophages and H9c2 cardiomyocyte cells, about which PLGA nanoparticles loaded with ADM-2 did not cause toxicity in the range 0.01-1 mg/ml. Of note, encapsulated ADM-2 significantly induced cell proliferation in EA.hy926 endothelial cells, indicating the ADM-2 bioactivity was preserved after the encapsulation process. Collectively, these results demonstrate the feasibility of using PLGA nanoparticles as delivery systems for the angiogenic peptide ADM-2, which could represent a novel approach for therapeutic angiogenesis in CVD using growth factor therapy.


Assuntos
Indutores da Angiogênese/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos , Células Endoteliais/efeitos dos fármacos , Hormônios Peptídicos/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Indutores da Angiogênese/química , Indutores da Angiogênese/toxicidade , Animais , Linhagem Celular , Preparações de Ação Retardada , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Cinética , Camundongos , Nanopartículas , Hormônios Peptídicos/química , Hormônios Peptídicos/toxicidade , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/toxicidade , Ratos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Solubilidade
9.
Front Immunol ; 9: 3137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30728824

RESUMO

Schistosomiasis is a neglected parasitic disease that affects millions of people worldwide and is caused by helminth parasites from the genus Schistosoma. When caused by S. mansoni, it is associated with the development of a hepatosplenic disease caused by an intense immune response to the important antigenic contribution of adult worms and to the presence of eggs trapped in liver tissue. Although the importance of the spleen for the establishment of immune pathology is widely accepted, it has received little attention in terms of the molecular mechanisms operating in response to the infection. Here, we interrogated the spleen proteome using a label-free shotgun approach for the potential discovery of molecular mechanisms associated to the peak of the acute phase of inflammation and the development of splenomegaly in the murine model. Over fifteen hundred proteins were identified in both infected and control individuals and 325 of those proteins were differentially expressed. Two hundred and forty-two proteins were found upregulated in infected individuals while 83 were downregulated. Functional enrichment analyses for differentially expressed proteins showed that most of them were categorized within pathways of innate and adaptive immunity, DNA replication, vesicle transport and catabolic metabolism. There was an important contribution of granulocyte proteins and antigen processing and presentation pathways were augmented, with the increased expression of MHC class II molecules but the negative regulation of cysteine and serine proteases. Several proteins related to RNA processing were upregulated, including splicing factors. We also found indications of metabolic reprogramming in spleen cells with downregulation of proteins related to mitochondrial metabolism. Ex-vivo imunophenotyping of spleen cells allowed us to attribute the higher abundance of MHC II detected by mass spectrometry to increased number of macrophages (F4/80+/MHC II+ cells) in the infected condition. We believe these findings add novel insights for the understanding of the immune mechanisms associated with the establishment of schistosomiasis and the processes of immune modulation implied in the host-parasite interactions.


Assuntos
Proteoma , Proteômica , Schistosoma , Esquistossomose/diagnóstico , Esquistossomose/metabolismo , Esplenomegalia/metabolismo , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Feminino , Imunofenotipagem , Espectrometria de Massas , Camundongos , Proteômica/métodos , Esquistossomose/parasitologia , Baço/citologia , Baço/metabolismo , Esplenomegalia/parasitologia
10.
Chem Phys Lipids ; 202: 28-37, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27913102

RESUMO

Detergents are widely used to solubilize and separate biomembrane components. It is therefore relevant to study and understand the mechanistic details underlying detergent-lipid interactions using biomimetic systems. Here, we have investigated in detail the process of membrane permeabilization and the nature of pores induced by sub-solubilizing concentrations of the detergent Triton X-100 (TX-100) in bilayers composed of palmitoyl oleoyl phosphatidylcholine (POPC), sphingomyelin (SM) and binary mixtures of these phospholipids with 30 mol% cholesterol (chol). A fluorescence quenching assay was used to evaluate the permeability of large unilamellar vesicles (LUVs) in the presence of increasing concentrations of TX-100. Confocal microscopy was employed to visualize and quantify the permeability of giant unilamellar vesicles (GUVs) to two fluorescent dyes of different sizes in the presence of TX-100. Both methods showed that POPC, POPC/chol and SM membranes become fully permeable at a specific TX-100 concentration, followed by complete (POPC and SM) and partial (POPC/chol) solubilization at a higher detergent concentration. The confocal microscopy experiments revealed that opening of pores occurs as a well-defined event and that for POPC and POPC/chol the pores were initially selective to the small probe and then grew and allowed passage of the larger dye as well. On the other hand, the insoluble SM/chol membranes exhibited only a mild TX-100-induced permeabilization. The membrane edge tension of the liquid phases was measured from the closure rate of macropores induced by electric pulses in GUVs. Membrane edge tension was shown to be sensitive to membrane composition and to decrease in the presence of TX-100. We propose that extensive permeabilization occurs below a critical membrane edge tension, which is eventually reached in the partially and fully soluble compositions, but not in the insoluble mixture.


Assuntos
Bicamadas Lipídicas/química , Octoxinol/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Octoxinol/farmacologia
11.
Biophys Rev ; 9(5): 649-667, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28836235

RESUMO

Detergents are amphiphilic molecules widely used to solubilize biological membranes and/or extract their components. Nevertheless, because of the complex composition of biomembranes, their solubilization by detergents has not been systematically studied. In this review, we address the solubilization of erythrocytes, which provide a relatively simple, robust and easy to handle biomembrane, and of biomimetic models, to stress the role of the lipid composition on the solubilization process. First, results of a systematic study on the solubilization of human erythrocyte membranes by different series of non-ionic (Triton, CxEy, Brij, Renex, Tween), anionic (bile salts) and zwitterionic (ASB, CHAPS) detergents are shown. Such quantitative approach allowed us to propose Resat-the effective detergent/lipid molar ratio in the membrane for the onset of hemolysis as a new parameter to classify the solubilization efficiency of detergents. Second, detergent-resistant membranes (DRMs) obtained as a result of the partial solubilization of erythrocytes by TX-100, C12E8 and Brij detergents are examined. DRMs were characterized by their cholesterol, sphingolipid and specific proteins content, as well as lipid packing. Finally, lipid bilayers of tuned lipid composition forming liposomes were used to investigate the solubilization process of membranes of different compositions/phases induced by Triton X-100. Optical microscopy of giant unilamellar vesicles revealed that pure phospholipid membranes are fully solubilized, whereas the presence of cholesterol renders the mixture partially or even fully insoluble, depending on the composition. Additionally, Triton X-100 induced phase separation in raft-like mixtures, and selective solubilization of the fluid phase only.

12.
Eur J Med Chem ; 63: 501-10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23524161

RESUMO

Based on classical colchicine site ligands and a computational model of the colchicine binding site on beta tubulin, two classes of chalcone derivatives were designed, synthesized and evaluated for inhibition of tubulin assembly and toxicity in human cancer cell lines. Docking studies suggested that the chalcone scaffold could fit the colchicine site on tubulin in an orientation similar to that of the natural product. In particular, a 3,4,5-trimethoxyphenyl ring adjacent to the carbonyl group appeared to benefit the ligand-tubulin interaction, occupying the same subcavity as the corresponding moiety in colchicine. Consistent with modeling predictions, several 3,4,5-trimethoxychalcones showed improved cytotoxicity to murine acute lymphoblastic leukemia cells compared with a previously described parent compound, and inhibited tubulin assembly in vitro as potently as colchicine. The most potent chalcones inhibited the growth of human leukemia cell lines at nanomolar concentrations, caused microtubule destabilization and mitotic arrest in human cervical cancer cells, and inhibited human breast cancer cell migration in scratch wound and Boyden chamber assays.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Chalconas/síntese química , Chalconas/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Chalconas/química , Relação Dose-Resposta a Droga , Humanos , Células Jurkat , Camundongos , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Células NIH 3T3 , Polimerização/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
13.
Sci Total Environ ; 432: 382-8, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22750185

RESUMO

This study was undertaken to address the current deficient knowledge of cellular response to solid lipid nanoparticles (SLNs) exposure. We investigated the cytotoxicity of several SLNs formulations in two fibroblast cell lineages, Vero and MDCK. Several methods were used to explore the mechanisms involved in this cytotoxic process, including cell viability assays, flow cytometry and ROS generation assessment. Among nanoparticles tested, two of them (F4 and F5) demonstrated more cytotoxic effects in both cell lineages. The cell viability assays suggested that F4 and F5 interfere in cell mitochondrial metabolism and in lysosomal activity. In addition, F5 decreased the percentage of MDCK cells in G0/G1 and G2/M phases, with a marked increase in the Sub/G1 population, suggesting DNA fragmentation. Regarding F4, although IC(50) was higher (~700 µg/mL), this formulation affected mitochondrial membrane potential for Vero cells. However, the IC(50) of F5 was around 250 µg/mL, suggesting the effect of SDS (sodium dodecyl sulfate) present in the formulation. In summary, the nanoparticles tested here appears to be biocompatible, with the exception of F5. Further studies are required to elucidate the in vivo effects of these nanoscale structures, in order to evaluate or predict the connotation of their increased and widespread use.


Assuntos
Fibroblastos/efeitos dos fármacos , Lipídeos/toxicidade , Nanopartículas/toxicidade , Animais , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular , Chlorocebus aethiops , Cães , Citometria de Fluxo , Células Madin Darby de Rim Canino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Células Vero
14.
Toxicol In Vitro ; 25(8): 2025-34, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21856409

RESUMO

This study investigated the mechanism of cytotoxicity of octyl (G8) and dodecyl (G12) gallates in a murine melanoma cell line (B16F10). For this purpose, several methods to measure cell viability were used to determine if the cytotoxicity induced by these gallates corresponds to a general or an organelle-specific effect. Furthermore, the mechanisms related to apoptosis were examined, by studying the caspase-3 activity, oxidative stress, mitochondrial potential and the expression of anti- or proapoptotic proteins. When comparing the various methods of assessing cell viability, the tested gallates showed a higher cytotoxicity in the assay that indicates lysosomal activity, compared with the assays that indicate mitochondrial and ribosomal activities. Both gallates promoted the release of lactate dehydrogenase into the medium, indicating an effect on cell membrane integrity. The gallates also promoted cellular oxidative stress, mitochondrial depolarization and an increase in caspase-3 activity. Furthermore, the gallates induced an increase in proapoptotic (Bax) and a decrease in antiapoptotic (Bcl-2) proteins expression. Our results indicate that the apoptotic cell death induced by G8 and G12 in B16F10 cells involves lipid membrane damages, lysosomal and mitochondrial dysfunction, which was accompanied by alterations in apoptotic proteins expression and seems to be triggered by cellular oxidative stress.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Gálico/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Animais , Caspase 3/metabolismo , Catalase/metabolismo , Linhagem Celular Tumoral , Corantes/metabolismo , DNA/análise , Ácido Gálico/toxicidade , L-Lactato Desidrogenase/metabolismo , Melanoma , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Vermelho Neutro/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sais de Tetrazólio/metabolismo , Tiazóis/metabolismo , Proteína X Associada a bcl-2/metabolismo , Receptor fas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa