RESUMO
AIMS: Heterogeneity in the rate of ß-cell loss in newly diagnosed type 1 diabetes patients is poorly understood and creates a barrier to designing and interpreting disease-modifying clinical trials. Integrative analyses of baseline multi-omics data obtained after the diagnosis of type 1 diabetes may provide mechanistic insight into the diverse rates of disease progression after type 1 diabetes diagnosis. METHODS: We collected samples in a pan-European consortium that enabled the concerted analysis of five different omics modalities in data from 97 newly diagnosed patients. In this study, we used Multi-Omics Factor Analysis to identify molecular signatures correlating with post-diagnosis decline in ß-cell mass measured as fasting C-peptide. RESULTS: Two molecular signatures were significantly correlated with fasting C-peptide levels. One signature showed a correlation to neutrophil degranulation, cytokine signalling, lymphoid and non-lymphoid cell interactions and G-protein coupled receptor signalling events that were inversely associated with a rapid decline in ß-cell function. The second signature was related to translation and viral infection was inversely associated with change in ß-cell function. In addition, the immunomics data revealed a Natural Killer cell signature associated with rapid ß-cell decline. CONCLUSIONS: Features that differ between individuals with slow and rapid decline in ß-cell mass could be valuable in staging and prediction of the rate of disease progression and thus enable smarter (shorter and smaller) trial designs for disease modifying therapies as well as offering biomarkers of therapeutic effect.
Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/metabolismo , Feminino , Masculino , Adulto , Progressão da Doença , Biomarcadores/análise , Seguimentos , Adolescente , Adulto Jovem , Prognóstico , Proteômica , Peptídeo C/análise , Peptídeo C/sangue , Criança , Pessoa de Meia-Idade , Genômica , MultiômicaRESUMO
BACKGROUND: Cardiovascular disease remains the leading cause of mortality in individuals with diabetes and improved understanding of its pathophysiology is needed. We investigated the association of a large panel of metabolites and molecular lipid species with future cardiovascular events in type 1 diabetes. METHODS: The study included 669 individuals with type 1 diabetes. Non-targeted serum metabolomics and lipidomics analyses were performed using mass spectrometry. Data on cardiovascular events (cardiovascular mortality, coronary artery disease, stroke, and peripheral arterial interventions) were obtained from Danish Health registries and analyzed by Cox hazards models. Metabolites and molecular lipid species were analyzed in univariate models adjusted for false discovery rate (FDR). Metabolites and molecular lipid species fulfilling a pFDR < 0.05 were subsequently analyzed in adjusted models including age, sex, hemoglobin A1c, mean arterial pressure, smoking, body mass index, low-density lipoprotein cholesterol, estimated glomerular filtration rate, urinary albumin excretion rate and previous cardiovascular disease. Analyses of molecular lipid species were further adjusted for triglycerides and statin use. RESULTS: Of the included participants, 55% were male and mean age was 55 ± 13 years. Higher 4-hydroxyphenylacetic acid (HR 1.35, CI [1.01-1.80], p = 0.04) and lower threonine (HR 0.81, CI [0.67-0.98] p = 0.03) were associated with development of cardiovascular events (n = 95). In lipidomics analysis, higher levels of three different species, diacyl-phosphatidylcholines (PC)(36:2) (HR 0.82, CI [0.70-0.98], p = 0.02), alkyl-acyl-phosphatidylcholines (PC-O)(34:2) (HR 0.76, CI [0.59-0.98], p = 0.03) and (PC-O)(34:3) (HR 0.75, CI [0.58-0.97], p = 0.03), correlated with lower risk of cardiovascular events, whereas higher sphingomyelin (SM)(34:1) (HR 1.32, CI [1.04-1.68], p = 0.02), was associated with an increased risk. CONCLUSIONS: Circulating metabolites and molecular lipid species were associated with future cardiovascular events in type 1 diabetes. While the causal effect of these biomolecules on the cardiovascular system remains unknown, our findings support that omics-based technologies, although still in an early phase, may have the potential to unravel new pathways and biomarkers in the field of cardiovascular disease in type 1 diabetes.
Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 1 , Adulto , Idoso , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , LDL-Colesterol , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/epidemiologia , Progressão da Doença , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fosfatidilcolinas , Fatores de RiscoRESUMO
Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.
Assuntos
Microbioma Gastrointestinal/fisiologia , Resistência à Insulina , Metaboloma , Soro/metabolismo , Aminoácidos de Cadeia Ramificada/biossíntese , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Bacteroides/fisiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/microbiologia , Jejum/sangue , Jejum/metabolismo , Intolerância à Glucose/sangue , Intolerância à Glucose/microbiologia , Humanos , Masculino , Metagenoma , Camundongos , Camundongos Endogâmicos C57BL , Países Baixos , Prevotella/fisiologiaRESUMO
Postprandial responses to food are complex, involving both genetic and environmental factors. We studied postprandial responses to a Big Mac meal challenge in monozygotic co-twins highly discordant for body weight. This unique design allows assessment of the contribution of obesity, independent of genetic liability. Comprehensive metabolic profiling using 3 analytical platforms was applied to fasting and postprandial serum samples from 16 healthy monozygotic twin pairs discordant for weight (body mass index difference >3 kg/m(2)). Nine concordant monozygotic pairs were examined as control pairs. Fecal samples were analyzed to assess diversity of the major bacterial groups by using 5 different validated bacterial group specific denaturing gradient gel electrophoresis methods. No differences in fecal bacterial diversity were detected when comparing co-twins discordant for weight (ANOVA, P<0.05). We found that within-pair similarity is a dominant factor in the metabolic postprandial response, independent of acquired obesity. Branched chain amino acids were increased in heavier as compared with leaner co-twins in the fasting state, but their levels converged postprandially (paired t tests, FDR q<0.05). We also found that specific bacterial groups were associated with postprandial changes of specific metabolites. Our findings underline important roles of genetic and early life factors in the regulation of postprandial metabolite levels.
Assuntos
Biomarcadores/análise , Dieta , Fezes/microbiologia , Metaboloma , Microbiota/genética , Obesidade/genética , Obesidade/metabolismo , Adulto , Índice de Massa Corporal , Peso Corporal , Estudos de Coortes , Feminino , Humanos , Masculino , Redes e Vias Metabólicas , RNA Ribossômico 16S/genética , Gêmeos Monozigóticos , Adulto JovemRESUMO
INTRODUCTION: Diabetic retinopathy (DR), diabetic kidney disease (DKD) and distal symmetric polyneuropathy (DSPN) share common pathophysiology and pose an additive risk of early mortality. RESEARCH DESIGN AND METHODS: In adults with type 1 diabetes, 49 metabolites previously associated with either DR or DKD were assessed in relation to presence of DSPN. Metabolites overlapping in significance with presence of all three complications were assessed in relation to microvascular burden severity (additive number of complications-ie, presence of DKD±DR±DSPN) using linear regression models. Subsequently, the same metabolites were assessed with progression to endpoints: soft microvascular events (progression in albuminuria grade, ≥30% estimated glomerular filtration rate (eGFR) decline, or any progression in DR grade), hard microvascular events (progression to proliferative DR, chronic kidney failure, or ≥40% eGFR decline), and hard microvascular or macrovascular events (hard microvascular events, cardiovascular events (myocardial infarction, stroke, or arterial interventions), or cardiovascular mortality), using Cox models. All models were adjusted for sex, baseline age, diabetes duration, systolic blood pressure, HbA1c, body mass index, total cholesterol, smoking, and statin treatment. RESULTS: The full cohort investigated consisted of 487 participants. Mean (SD) follow-up was 4.8 (2.9, 5.7) years. Baseline biothesiometry was available in 202 participants, comprising the cross-sectional cohort. Eight metabolites were significantly associated with presence of DR, DKD, and DSPN, and six with additive microvascular burden severity. In the full cohort longitudinal analysis, higher levels of 3,4-dihydroxybutanoic acid (DHBA), 2,4-DHBA, ribonic acid, glycine, and ribitol were associated with development of events in both crude and adjusted models. Adding 3,4-DHBA, ribonic acid, and glycine to a traditional risk factor model improved the discrimination of hard microvascular events. CONCLUSIONS: While prospective studies directly assessing the predictive ability of these markers are needed, our results strengthen the role of clinical metabolomics in relation to risk assessment of diabetic complications in chronic type 1 diabetes.
Assuntos
Diabetes Mellitus Tipo 1 , Neuropatias Diabéticas , Retinopatia Diabética , Adulto , Humanos , Diabetes Mellitus Tipo 1/complicações , Estudos Prospectivos , Estudos Transversais , Retinopatia Diabética/etiologia , Retinopatia Diabética/complicações , Neuropatias Diabéticas/complicações , GlicinaRESUMO
AIMS/HYPOTHESIS: We examined whether analysis of lipids by ultra-performance liquid chromatography (UPLC) coupled to MS allows the development of a laboratory test for non-alcoholic fatty-liver disease (NAFLD), and how a lipid-profile biomarker compares with the prediction of NAFLD and liver-fat content based on routinely available clinical and laboratory data. METHODS: We analysed the concentrations of molecular lipids by UPLC-MS in blood samples of 679 well-characterised individuals in whom liver-fat content was measured using proton magnetic resonance spectroscopy ((1)H-MRS) or liver biopsy. The participants were divided into biomarker-discovery (n = 287) and validation (n = 392) groups to build and validate the diagnostic models, respectively. RESULTS: Individuals with NAFLD had increased triacylglycerols with low carbon number and double-bond content while lysophosphatidylcholines and ether phospholipids were diminished in those with NAFLD. A serum-lipid signature comprising three molecular lipids ('lipid triplet') was developed to estimate the percentage of liver fat. It had a sensitivity of 69.1% and specificity of 73.8% when applied for diagnosis of NAFLD in the validation series. The usefulness of the lipid triplet was demonstrated in a weight-loss intervention study. CONCLUSIONS/INTERPRETATION: The liver-fat-biomarker signature based on molecular lipids may provide a non-invasive tool to diagnose NAFLD, in addition to highlighting lipid molecular pathways involved in the disease.
Assuntos
Fígado Gorduroso/sangue , Fígado Gorduroso/metabolismo , Lipídeos/sangue , Fígado/metabolismo , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica , Adulto JovemRESUMO
PURPOSE: Syrah red grapes are used in the production of tannin-rich red wines. Tannins are high molecular weight molecules, proanthocyanidins (PAs), and poorly absorbed in the upper intestine. In this study, gut microbial metabolism of Syrah grape phenolic compounds was investigated. METHODS: Syrah grape pericarp was subjected to an enzymatic in vitro digestion model, and red wine and grape skin PA fraction were prepared. Microbial conversion was screened using an in vitro colon model with faecal microbiota, by measurement of short-chain fatty acids by gas chromatography (GC) and microbial phenolic metabolites using GC with mass detection (GC-MS). Red wine metabolites were further profiled using two-dimensional GC mass spectrometry (GCxGC-TOFMS). In addition, the effect of PA structure and dose on conversion efficiency was investigated by GC-MS. RESULTS: Red wine exhibited a higher degree of C1-C3 phenolic acid formation than PA fraction or grape pericarp powders. Hydroxyphenyl valeric acid (flavanols and PAs as precursors) and 3,5-dimethoxy-4-hydroxybenzoic acid (anthocyanin as a precursor) were identified from the red wine metabolite profile. In the absence of native grape pericarp or red wine matrix, the isolated PAs were found to be effective in the dose-dependent inhibition of microbial conversions and short-chain fatty acid formation. CONCLUSIONS: Metabolite profiling was complementary to targeted analysis. The identified metabolites had biological relevance, because the structures of the metabolites resembled fragments of their grape phenolic precursors or were in agreement with literature data.
Assuntos
Colo/metabolismo , Modelos Biológicos , Preparações de Plantas , Vitis/química , Colo/microbiologia , Digestão , Ácidos Graxos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Hidroxibenzoatos/análise , Metaboloma , Metagenoma , Polifenóis/análise , Proantocianidinas/análise , Vinho/análiseRESUMO
INTRODUCTION: Hypoglycemia is a major limiting factor in achieving recommended glycemic targets for people with type 1 diabetes. Exposure to recurrent hypoglycemia results in blunted hormonal counter-regulatory and symptomatic responses to hypoglycemia. Limited data on metabolic adaptation to recurrent hypoglycemia are available. This study examined the acute metabolic responses to hypoglycemia and the effect of antecedent hypoglycemia on these responses in type 1 diabetes. RESEARCH DESIGN AND METHODS: Twenty-one outpatients with type 1 diabetes with normal or impaired awareness of hypoglycemia participated in a study assessing the response to hypoglycemia on 2 consecutive days by a hyperinsulinemic glucose clamp. Participants underwent a period of normoglycemia and a period of hypoglycemia during the hyperinsulinemic glucose clamp. Plasma samples were taken during normoglycemia and at the beginning and the end of the hypoglycemic period. Metabolomic analysis of the plasma samples was conducted using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. RESULTS: In total, 68 metabolites were studied. On day 1, concentrations of the branched-chain amino acids, leucine (p=3.8×10-3) and isoleucine (p=2.2×10-3), decreased during hypoglycemia. On day 2, during hypoglycemia, five amino acids (including leucine and isoleucine) significantly decreased, and two fatty acids (tetradecanoic and oleic acids) significantly increased (p<0.05). Although more metabolites responded to hypoglycemia on day 2, the responses of the single metabolites were not statistically significant between the 2 days. CONCLUSIONS: In individuals with type 1 diabetes, one episode of hypoglycemia decreases leucine and isoleucine concentrations. Antecedent hypoglycemia results in the decrement of five amino acids and increases the concentrations of two fatty acids, suggesting an alteration between the two hypoglycemic episodes, which could indicate a possible adaptation. However, more studies are needed to gain a comprehensive understanding of the consequences of these alterations. TRIAL REGISTRATION NUMBER: NCT01337362.
Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Hipoglicemiantes , Humanos , Aminoácidos , Aminoácidos de Cadeia Ramificada , Glicemia/análise , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Ácidos Graxos , Hipoglicemia/induzido quimicamente , Hipoglicemiantes/uso terapêutico , Insulina , Isoleucina/sangue , Leucina/sangueRESUMO
Mitochondrial dysfunction is a major cause of neurodegenerative and neuromuscular diseases of adult age and of multisystem disorders of childhood. However, no effective treatment exists for these progressive disorders. Cell culture studies suggested that ketogenic diet (KD), with low glucose and high fat content, could select against cells or mitochondria with mutant mitochondrial DNA (mtDNA), but proper patient trials are still lacking. We studied here the transgenic Deletor mouse, a disease model for progressive late-onset mitochondrial myopathy, accumulating mtDNA deletions during aging and manifesting subtle progressive respiratory chain (RC) deficiency. We found that these mice have widespread lipidomic and metabolite changes, including abnormal plasma phospholipid and free amino acid levels and ketone body production. We treated these mice with pre-symptomatic long-term and post-symptomatic shorter term KD. The effects of the diet for disease progression were followed by morphological, metabolomic and lipidomic tools. We show here that the diet decreased the amount of cytochrome c oxidase negative muscle fibers, a key feature in mitochondrial RC deficiencies, and prevented completely the formation of the mitochondrial ultrastructural abnormalities in the muscle. Furthermore, most of the metabolic and lipidomic changes were cured by the diet to wild-type levels. The diet did not, however, significantly affect the mtDNA quality or quantity, but rather induced mitochondrial biogenesis and restored liver lipid levels. Our results show that mitochondrial myopathy induces widespread metabolic changes, and that KD can slow down progression of the disease in mice. These results suggest that KD may be useful for mitochondrial late-onset myopathies.
Assuntos
Dieta Cetogênica , Progressão da Doença , Miopatias Mitocondriais/prevenção & controle , Animais , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Dosagem de Genes/genética , Metabolismo dos Lipídeos/genética , Fígado/patologia , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/enzimologia , Mitocôndrias/ultraestrutura , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/ultraestrutura , Obesidade/patologia , Fenótipo , Deleção de Sequência/genéticaRESUMO
Recent evidence from serum metabolomics indicates that specific metabolic disturbances precede ß-cell autoimmunity in humans and can be used to identify those children who subsequently progress to type 1 diabetes. The mechanisms behind these disturbances are unknown. Here we show the specificity of the pre-autoimmune metabolic changes, as indicated by their conservation in a murine model of type 1 diabetes. We performed a study in non-obese prediabetic (NOD) mice which recapitulated the design of the human study and derived the metabolic states from longitudinal lipidomics data. We show that female NOD mice who later progress to autoimmune diabetes exhibit the same lipidomic pattern as prediabetic children. These metabolic changes are accompanied by enhanced glucose-stimulated insulin secretion, normoglycemia, upregulation of insulinotropic amino acids in islets, elevated plasma leptin and adiponectin, and diminished gut microbial diversity of the Clostridium leptum group. Together, the findings indicate that autoimmune diabetes is preceded by a state of increased metabolic demands on the islets resulting in elevated insulin secretion and suggest alternative metabolic related pathways as therapeutic targets to prevent diabetes.
Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Modelos Biológicos , Adiponectina/metabolismo , Animais , Análise por Conglomerados , Biologia Computacional , Diabetes Mellitus Tipo 1/fisiopatologia , Progressão da Doença , Feminino , Humanos , Insulina/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Lisofosfatidilcolinas/metabolismo , Masculino , Redes e Vias Metabólicas , Metaboloma/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Fatores de RiscoRESUMO
Background: Liraglutide is a glucose-lowering medication used to treat type 2 diabetes and obesity. It is a GLP-1 receptor agonist with downstream metabolic changes beyond the incretin system, such as reducing the risk of cardiovascular complications. The understanding of these changes is critical for improving treatment outcomes. Herein, we present a post hoc experimental analysis using metabolomic phenotyping to discover molecular mecphanisms in response to liraglutide. Method: Plasma samples were obtained from The LiraFlame Study (ClinicalTrials.gov identifier: NCT03449654), a randomized double-blinded placebo-controlled clinical trial, including 102 participants with type 2 diabetes randomized to either liraglutide or placebo treatment for 26 weeks. Mass spectrometry-based metabolomics analyses were carried out on samples from baseline and the end of the trial. Metabolites (n=114) were categorized into pathways and linear mixed models were constructed to evaluate the association between changes in metabolites and liraglutide treatment. Results: We found the free fatty acid palmitoleate was significantly reduced in the liraglutide group compared to placebo (adjusted for multiple testing p-value = 0.04). The activity of stearoyl-CoA desaturase-1 (SCD1), the rate limiting enzyme for converting palmitate into palmitoleate, was found significantly downregulated by liraglutide treatment compared to placebo (p-value = 0.01). These metabolic changes have demonstrated to be linked to insulin sensitivity and cardiovascular health.
RESUMO
Type 1 diabetes is associated with increased intestinal inflammation and decreased abundance of butyrate-producing bacteria. We investigated the effect of butyrate on inflammation, kidney parameters, HbA1c, serum metabolites and gastrointestinal symptoms in persons with type 1 diabetes, albuminuria and intestinal inflammation. We conducted a randomized placebo-controlled, double-blind, parallel clinical study involving 53 participants randomized to 3.6 g sodium butyrate daily or placebo for 12 weeks. The primary endpoint was the change in fecal calprotectin. Additional endpoints were the change in fecal short chain fatty acids, intestinal alkaline phosphatase activity and immunoglobulins, serum lipopolysaccharide, CRP, albuminuria, kidney function, HbA1c, metabolites and gastrointestinal symptoms. The mean age was 54 ± 13 years, and the median [Q1:Q3] urinary albumin excretion was 46 [14:121] mg/g. The median fecal calprotectin in the butyrate group was 48 [26:100] µg/g at baseline, and the change was -1.0 [-20:10] µg/g; the median in the placebo group was 61 [25:139] µg/g at baseline, and the change was -12 [-95:1] µg/g. The difference between the groups was not significant (p = 0.24); neither did we find an effect of butyrate compared to placebo on the other inflammatory markers, kidney parameters, HbA1c, metabolites nor gastrointestinal symptoms. Twelve weeks of butyrate supplementation did not reduce intestinal inflammation in persons with type 1 diabetes, albuminuria and intestinal inflammation.
RESUMO
Feces are the product of our diets and have been linked to diseases of the gut, including Chron's disease and metabolic diseases such as diabetes. For screening metabolites in heterogeneous samples such as feces, it is necessary to use fast and reproducible analytical methods that maximize metabolite detection. As sample preparation is crucial to obtain high quality data in MS-based clinical metabolomics, we developed a novel, efficient and robust method for preparing fecal samples for analysis with a focus in reducing aliquoting and detecting both polar and non-polar metabolites. Fecal samples (n = 475) from patients with alcohol-related liver disease and healthy controls were prepared according to the proposed method and analyzed in an UHPLC-QQQ targeted platform in order to obtain a quantitative profile of compounds that impact liver-gut axis metabolism. MS analyses of the prepared fecal samples have shown reproducibility and coverage of n = 28 metabolites, mostly comprising bile acids and amino acids. We report metabolite-wise relative standard deviation (RSD) in quality control samples, inter-day repeatability, LOD (limit of detection), LOQ (limit of quantification), range of linearity and method recovery. The average concentrations for 135 healthy participants are reported here for clinical applications. Our high-throughput method provides a novel tool for investigating gut-liver axis metabolism in liver-related diseases using a noninvasive collected sample.
RESUMO
Introduction: Diabetic cardiovascular autonomic neuropathy (CAN) is associated with increased mortality and morbidity. To explore metabolic mechanisms associated with CAN we investigated associations between serum metabolites and CAN in persons with type 1 diabetes (T1D). Materials and Methods: Cardiovascular reflex tests (CARTs) (heart rate response to: deep breathing; lying-to-standing test; and the Valsalva maneuver) were used to diagnose CAN in 302 persons with T1D. More than one pathological CARTs defined the CAN diagnosis. Serum metabolomics and lipidomic profiles were analyzed with two complementary non-targeted mass-spectrometry methods. Cross-sectional associations between metabolites and CAN were assessed by linear regression models adjusted for relevant confounders. Results: Participants were median (IQR) aged 55(49, 63) years, 48% males with diabetes duration 39(32, 47) years, HbA1c 63(55,69) mmol/mol and 34% had CAN. A total of 75 metabolites and 106 lipids were analyzed. In crude models, the CAN diagnosis was associated with higher levels of hydroxy fatty acids (2,4- and 3,4-dihydroxybutanoic acids, 4-deoxytetronic acid), creatinine, sugar derivates (ribitol, ribonic acid, myo-inositol), citric acid, glycerol, phenols, phosphatidylcholines and lower levels of free fatty acids and the amino acid methionine (p<0.05). Upon adjustment, positive associations with the CAN diagnoses were retained for hydroxy fatty acids, tricarboxylic acid (TCA) cycle-based sugar derivates, citric acid, and phenols (P<0.05). Conclusion: Metabolic pathways, including the TCA cycle, hydroxy fatty acids, phosphatidylcholines and sugar derivatives are associated with the CAN diagnosis in T1D. These pathway may be part of the pathogeneses leading to CAN and may be modifiable risk factors for the complication.
Assuntos
Diabetes Mellitus Tipo 1 , Neuropatias Diabéticas , Ácido Cítrico , Estudos Transversais , Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/etiologia , Ácidos Graxos , Feminino , Glucose , Humanos , Masculino , Fenóis , Fosfatidilcolinas , AçúcaresRESUMO
Data processing and identification of unknown compounds in comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC×GC/TOFMS) analysis is a major challenge, particularly when large sample sets are analyzed. Herein, we present a method for efficient treatment of large data sets produced by GC×GC/TOFMS implemented as a freely available open source software package, Guineu. To handle large data sets and to efficiently utilize all the features available in the vendor software (baseline correction, mass spectral deconvolution, peak picking, integration, library search, and signal-to-noise filtering), data preprocessed by instrument software are used as a starting point for further processing. Our software affords alignment of the data, normalization, data filtering, and utilization of retention indexes in the verification of identification as well as a novel tool for automated group-type identification of the compounds. Herein, different features of the software are studied in detail and the performance of the system is verified by the analysis of a large set of standard samples as well as of a large set of authentic biological samples, including the control samples. The quantitative features of our GC×GC/TOFMS methodology are also studied to further demonstrate the method performance and the experimental results confirm the reliability of the developed procedure. The methodology has already been successfully used for the analysis of several thousand samples in the field of metabolomics.
Assuntos
Compostos Orgânicos/análise , Software , Algoritmos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Compostos Orgânicos/metabolismo , Fatores de TempoRESUMO
The evidence of the beneficial health effects of dietary fiber and whole grain consumption is strong, but the underlying mechanisms are not completely understood. Here, we investigate how the consumption of high-fiber rye bread (RB) or white-wheat bread (WB) modifies the plasma metabolomic profiles in postmenopausal women. The study was a randomized crossover trial consisting of 8-wk intervention periods and an 8-wk washout period. The study included 39 postmenopausal women with elevated serum total cholesterol (5.0-8.5 mmol/L) and BMI 20-33 kg/m(2). During the intervention periods, the study breads contributed to least 20% of total energy intake. Two analytical platforms for metabolomics were applied. Lipidomic analysis was performed using ultra performance liquid chromatography coupled to electrospray ionization MS and the other metabolites, including sterols, organic acids, and alcohols, were analyzed by 2-dimensional GC coupled to time-of-flight MS. Altogether, 540 metabolites were profiled. Ribitol (P < 0.001), ribonic acid (P < 0.001), and indoleacetic acid (P < 0.001) increased during the RB consumption period. Ribonic acid correlated positively with tryptophan (r = 0.40; P = 0.003), which is a precursor for the biosynthesis of hunger-depressing serotonin. There were no changes in plasma lipidomic profiles during the RB or WB intervention periods. The results suggest that 8-wk consumption of high-fiber rye bread increases metabolites that might mediate positive effects of rye bread on satiety and weight maintenance.
Assuntos
Peso Corporal , Fibras na Dieta/administração & dosagem , Metabolômica , Pós-Menopausa/metabolismo , Saciação , Secale , Pão , Estudos Cross-Over , Ácidos Indolacéticos/sangue , Ribitol/sangue , Triptofano/sangueRESUMO
Whole grain consumption has been linked to a lower risk of metabolic syndrome, which is normally associated with a low-grade chronic inflammation. The benefits of whole grain are in part related to the inclusion of the bran, rich in phenolic acids and fiber. However, the phenols are poorly bioaccessible from the cereal matrix. The aim of the present study was to investigate the effect of bioprocessing of the bran in whole wheat bread on the bioavailability of phenolic acids, the postprandial plasma antioxidant capacity, and ex vivo antiinflammatory properties. After consumption of a low phenolic acid diet for 3 d and overnight fasting, 8 healthy men consumed 300 g of whole wheat bread containing native bran (control bread) or bioprocessed bran (bioprocessed bread) in a cross-over design. Urine and blood samples were collected for 24 h to analyze the phenolic acids and metabolites. Trolox equivalent antioxidant capacity was measured in plasma. Cytokines were measured in blood after ex vivo stimulation with LPS. The bioavailabilities of ferulic acid, vanillic acid, sinapic acid, and 3,4-dimethoxybenzoic acid from the bioprocessed bread were 2- to 3-fold those from the control bread. Phenylpropionic acid and 3-hydroxyphenylpropionic acid were the main colonic metabolites of the nonbioaccessible phenols. The ratios of pro-:antiinflammatory cytokines were significantly lower in LPS-stimulated blood after the consumption of the bioprocessed bread. In conclusion, bioprocessing can remarkably increase the bioavailability of phenolic acids and their circulating metabolites, compounds which have immunomodulatory effects ex vivo.
Assuntos
Ácidos Cumáricos/farmacocinética , Fibras na Dieta , Manipulação de Alimentos/métodos , Inflamação/prevenção & controle , Ácido Vanílico/farmacocinética , Adulto , Área Sob a Curva , Disponibilidade Biológica , Pão , Ácidos Cumáricos/farmacologia , Estudos Cross-Over , Citocinas/biossíntese , Humanos , Masculino , Pessoa de Meia-Idade , Propionatos , Ácido Vanílico/farmacologiaRESUMO
BACKGROUND: The mechanism behind the lowered postprandial insulin demand observed after rye bread intake compared to wheat bread is unknown. The aim of this study was to use the metabolomics approach to identify potential metabolites related to amino acid metabolism involved in this mechanism. METHODS: A sourdough fermented endosperm rye bread (RB) and a standard white wheat bread (WB) as a reference were served in random order to 16 healthy subjects. Test bread portions contained 50 g available carbohydrate. In vitro hydrolysis of starch and protein were performed for both test breads. Blood samples for measuring glucose and insulin concentrations were drawn over 4 h and gastric emptying rate (GER) was measured. Changes in the plasma metabolome were investigated by applying a comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry metabolomics platform (GC × GC-TOF-MS). RESULTS: Plasma insulin response to RB was lower than to WB at 30 min (P = 0.004), 45 min (P = 0.002) and 60 min (P < 0.001) after bread intake, and plasma glucose response was significantly higher at time point 90 min after RB than WB intake (P = 0.045). The starch hydrolysis rate was higher for RB than WB, contrary to the in vitro protein digestibility. There were no differences in GER between breads. From 255 metabolites identified by the metabolomics platform, 26 showed significant postprandial relative changes after 30 minutes of bread intake (p and q values < 0.05). Among them, there were changes in essential amino acids (phenylalanine, methionine, tyrosine and glutamic acid), metabolites involved in the tricarboxylic acid cycle (alpha-ketoglutaric, pyruvic acid and citric acid) and several organic acids. Interestingly, the levels of two compounds involved in the tryptophan metabolism (picolinic acid, ribitol) significantly changed depending on the different bread intake. CONCLUSIONS: A single meal of a low fibre sourdough rye bread producing low postprandial insulin response brings in several changes in plasma amino acids and their metabolites and some of these might have properties beneficial for health.
Assuntos
Glicemia/metabolismo , Pão , Endosperma/metabolismo , Insulina/sangue , Metaboloma , Período Pós-Prandial/fisiologia , Secale/metabolismo , Triticum/metabolismo , Adulto , Feminino , Fermentação , Esvaziamento Gástrico , Humanos , MasculinoRESUMO
Omics-based methods may provide new markers associated to diabetic retinopathy (DR). We investigated a wide omics panel of metabolites and lipids related to DR in type 1 diabetes. Metabolomic analyses were performed using two-dimensional gas chromatography with time-of-flight mass spectrometry and lipidomic analyses using an ultra-high-performance liquid chromatography quadruple time-of-flight mass spectrometry method in 648 individuals with type 1 diabetes. Subjects were subdivided into no DR, mild nonproliferative DR (NPDR), moderate NPDR, proliferative DR, and proliferative DR with fibrosis. End points were any progression of DR, onset of DR, and progression from mild to severe DR tracked from standard ambulatory care and investigated using Cox models. The cohort consisted of 648 participants aged a mean of 54.4 ± 12.8 years, 55.5% were men, and follow-up was 5.1-5.5 years. Cross-sectionally, 2,4-dihydroxybutyric acid (DHBA), 3,4-DHBA, ribonic acid, ribitol, and the triglycerides 50:1 and 50:2 significantly correlated (P < 0.042) to DR stage. Longitudinally, higher 3,4-DHBA was a risk marker for progression of DR (n = 133) after adjustment (P = 0.033). We demonstrated multiple metabolites being positively correlated to a higher grade of DR in type 1 diabetes and several triglycerides being negatively correlated. Furthermore, higher 3,4-DHBA was an independent risk marker for progression of DR; however, confirmation is required.
Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Retinopatia Diabética/fisiopatologia , Adulto , Idoso , Estudos Transversais , Diabetes Mellitus Tipo 1/sangue , Retinopatia Diabética/sangue , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Triglicerídeos/sangueRESUMO
BACKGROUND AND AIMS: Adipose tissue plays a pivotal role in storing excess fat and its composition reflects the history of person's lifestyle and metabolic health. Broad profiling of lipids with mass spectrometry has potential for uncovering new knowledge on the pathology of obesity, metabolic syndrome, diabetes and other related conditions. Here, we developed a lipidomic method for analyzing human subcutaneous adipose biopsies. We applied the method to four body areas to understand the differences in lipid composition between these areas. MATERIALS AND METHODS: Adipose tissue biopsies from 10 participants were analyzed using ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The sample preparation optimization included the optimization of the lipid extraction, the sample amount and the sample dilution factor to detect lipids in an appropriate concentration range. Lipidomic analyses were performed for adipose tissue collected from the abdomen, breast, thigh and lower back. Differences in lipid levels between tissues were visualized with heatmaps. RESULTS: Lipidomic analysis on human adipose biopsies lead to the identification of 186lipids in 2 mg of sample. Technical variation of the lipid-class specific internal standards were below 5%, thus indicating acceptable repeatability. Triacylglycerols were highly represented in the adipose tissue samples, and lipids from 13 lipid classes were identified. Long polyunsaturated triacylglycerols in higher levels in thigh (q<0.05), when compared with the abdomen, breast and lower back, indicating that the lipidome was area-specific. CONCLUSION: The method presented here is suitable for the analysis of lipid profiles in 2 mg of adipose tissue. The amount of fat across the body is important for health but we argue that also the distribution and the particular profile of the lipidome may be relevant for metabolic outcomes. We suggest that the method presented in this paper could be useful for detecting such aberrations.