Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Genet ; 11(9): e1005506, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26348837

RESUMO

Beta-cell apoptosis and failure to induce beta-cell regeneration are hallmarks of type 2-like diabetes in mouse models. Here we show that islets from obese, diabetes-susceptible New Zealand Obese (NZO) mice, in contrast to diabetes-resistant C57BL/6J (B6)-ob/ob mice, do not proliferate in response to an in-vivo glucose challenge but lose their beta-cells. Genome-wide RNAseq based transcriptomics indicated an induction of 22 cell cycle-associated genes in B6-ob/ob islets that did not respond in NZO islets. Of all genes differentially expressed in islets of the two strains, seven mapped to the diabesity QTL Nob3, and were hypomorphic in either NZO (Lefty1, Apoa2, Pcp4l1, Mndal, Slamf7, Pydc3) or B6 (Ifi202b). Adenoviral overexpression of Lefty1, Apoa2, and Pcp4l1 in primary islet cells increased proliferation, whereas overexpression of Ifi202b suppressed it. We conclude that the identified genes in synergy with obesity and insulin resistance participate in adaptive islet hyperplasia and prevention from severe diabetes in B6-ob/ob mice.


Assuntos
Proliferação de Células/genética , Diabetes Mellitus Experimental/genética , Ilhotas Pancreáticas/citologia , Animais , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Fatores de Determinação Direita-Esquerda/genética , Camundongos , Camundongos Endogâmicos C57BL , Locos de Características Quantitativas
2.
BMC Genomics ; 18(1): 172, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28201990

RESUMO

BACKGROUND: Obesity, the excessive accumulation of body fat, is a highly heritable and genetically heterogeneous disorder. The complex, polygenic basis for the disease consisting of a network of different gene variants is still not completely known. RESULTS: In the current study we generated a BAC library of the obese-prone NZO strain to clarify the genomic alteration within the gene cluster Ifi200 on chr.1 including Ifi202b, an obesity gene that is in contrast to NZO not expressed in the lean B6 mouse. With the PacBio sequencing data of NZO BAC clones we identified a deletion spanning approximately 261.8 kb in the B6 reference genome. The deletion affects different members of the Ifi200 gene family which also includes the original first exon and 5'-regulatory parts of the Ifi202b gene and suggests to be the relevant cause of its expression deficiency in B6. In addition, the generation and characterization of congenic mice carrying the critical fragment on the B6 background demonstrate its crucial role for obesity and insulin resistance. CONCLUSIONS: Our data reveal the reconstruction of a complex genomic region on mouse chr.1 resulting from deletions and duplications of Ifi200 genes and suggest to be relevant for the development of obesity. The results further demonstrate the complexity of the disease and highlight the importance for studying rare genetic variants as they can be causal for large effects.


Assuntos
Cromossomos de Mamíferos/genética , Genômica , Resistência à Insulina/genética , Família Multigênica/genética , Obesidade/genética , Deleção de Sequência , Animais , Cromossomos Artificiais Bacterianos/genética , Biblioteca Gênica , Técnicas de Genotipagem , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de DNA
3.
Recent Results Cancer Res ; 198: 89-106, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27318682

RESUMO

Radiation and chemotherapy are the main pillars of the current multimodal treatment concept for cancer patients. However, tumor recurrences and resistances still hamper treatment success regardless of advances in radiation beam application, particle radiotherapy, and optimized chemotherapeutics. To specifically intervene at key recurrence- and resistance-promoting molecular processes, the development of potent and specific molecular-targeted agents is demanded for an efficient, safe, and simultaneous integration into current standard of care regimens. Potential targets for such an approach are integrins conferring structural and biochemical communication between cells and their microenvironment. Integrin binding to extracellular matrix activates intracellular signaling for regulating essential cellular functions such as survival, proliferation, differentiation, adhesion, and cell motility. Tumor-associated characteristics such as invasion, metastasis, and radiochemoresistance also highly depend on integrin function. Owing to their dual functionality and their overexpression in the majority of human malignancies, integrins present ideal and accessible targets for cancer therapy. In the following chapter, the current knowledge on aspects of the tumor microenvironment, the molecular regulation of integrin-dependent radiochemoresistance and current approaches to integrin targeting are summarized.


Assuntos
Integrinas/antagonistas & inibidores , Terapia de Alvo Molecular/métodos , Neoplasias/terapia , Radioterapia (Especialidade)/métodos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Anticorpos Monoclonais/uso terapêutico , Quimiorradioterapia , Humanos , Integrinas/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos da radiação
4.
Diabetes ; 63(12): 4230-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25053586

RESUMO

Type 2 diabetes in humans and in obese mice is polygenic. In recent genome-wide association studies, genetic markers explaining a small portion of the genetic contribution to the disease were discovered. However, functional evidence linking these genes with the pathogenesis of diabetes is scarce. We performed RNA sequencing-based transcriptomics of islets from two obese mouse strains, a diabetes-susceptible (NZO) and a diabetes-resistant (B6-ob/ob) mouse, after a short glucose challenge and compared these results with human data. Alignment of 2,328 differentially expressed genes to 106 human diabetes candidate genes revealed an overlap of 20 genes, including TCF7L2, IGFBP2, CDKN2A, CDKN2B, GRB10, and PRC1. The data provide a functional validation of human diabetes candidate genes, including those involved in regulating islet cell recovery and proliferation, and identify additional candidates that could be involved in human ß-cell failure.


Assuntos
Diabetes Mellitus Tipo 2/genética , Ilhotas Pancreáticas/metabolismo , Obesidade/genética , Transcriptoma/genética , Animais , Proteínas de Ciclo Celular/genética , Inibidor de Quinase Dependente de Ciclina p15/genética , Diabetes Mellitus Tipo 2/complicações , Proteína Adaptadora GRB10/genética , Perfilação da Expressão Gênica , Genes p16 , Predisposição Genética para Doença , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Camundongos , Camundongos Endogâmicos , Obesidade/complicações , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
5.
PLoS One ; 8(1): e53025, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308133

RESUMO

A region on mouse distal chromosome 1 (Chr. 1) that is highly enriched in quantitative trait loci (QTLs) controlling neural and behavioral phenotypes overlaps with the peak region of a major obesity QTL (Nob3.38), which we identified in an intercross of New Zealand Obese (NZO) mice with C57BL/6J (B6). By positional cloning we recently identified a microdeletion within this locus causing the disruption of Ifi202b that protects from adiposity by suppressing expression of 11ß-Hsd1. Here we show that the Nob3.38 segment also corresponds with the QTL rich region (Qrr1) on Chr. 1 and associates with increased voluntary running wheel activity, Rota-rod performance, decreased grip strength, and anxiety-related traits. The characterization of a subcongenic line carrying 14.2 Mbp of Nob3.38 with a polymorphic region of 4.4 Mbp indicates that the microdeletion and/or other polymorphisms in its proximity alter body weight, voluntary activity, and exploration. Since 27 out of 32 QTL were identified in crosses with B6, we hypothesized that the microdeletion and or adjacent SNPs are unique for B6 mice and responsible for some of the complex Qrr1-mediated effects. Indeed, a phylogenic study of 28 mouse strains revealed a NZO-like genotype for 22 and a B6-like genotype for NZW/LacJ and 4 other C57BL strains. Thus, we suggest that a Nob3.38 interval (173.0-177.4 Mbp) does not only modify adiposity but also neurobehavioral traits by a haplotype segregating with C57BL strains.


Assuntos
Cromossomos de Mamíferos/genética , Obesidade/genética , Locos de Características Quantitativas , Animais , Sequência de Bases , Comportamento Animal , Peso Corporal , Feminino , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Dados de Sequência Molecular , Obesidade/metabolismo , Obesidade/patologia , Fenótipo
6.
Adipocyte ; 1(4): 203-214, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23700535

RESUMO

PKCλ, an atypical member of the multifunctional protein kinase C family, has been implicated in the regulation of insulin-stimulated glucose transport and of the intracellular immune response. To further elucidate the role of this cellular regulator in diet-induced obesity and insulin resistance, we generated both liver (PKC-Alb) and adipose tissue (PKC-Ap2) specific knockout mice. Body weight, fat mass, food intake, glucose homeostasis and energy expenditure were evaluated in mice maintained on either chow or high fat diet (HFD). Ablation of PKCλ from the adipose tissue resulted in mice that were indistinguishable from their wild-type littermates. However, PKC-Alb mice were resistant to diet-induced obesity (DIO). Surprisingly this DIO resistance was not associated with either a reduction in caloric intake or an increase in energy expenditure as compared with their wild-type littermates. Furthermore, these mice displayed an improvement in glucose tolerance. When maintained on chow diet, these mice were similar to wild types in respect to body weight and fat mass, yet insulin sensitivity was impaired compared with wt littermates. Taken together these data suggest that hepatic PKCλ is modulating insulin-mediated glucose turnover and response to high fat diet feeding, thus offering a deeper understanding of an important target for anti-obesity therapeutics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa