Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phytopathology ; 109(3): 409-417, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30161014

RESUMO

Wheat crops are constantly challenged by the pathogen Zymoseptoria tritici, responsible for Septoria tritici Blotch (STB) disease. The present study reports the evaluation of five elicitor compounds (λ-carrageenan, cytosine-phosphate-guanine oligodesoxynucleotide motifs [CpG ODN], glycine betaine, Spirulina platensis, and ergosterol) for the protection of wheat against STB in order to offer new alternative tools to farmers for sustainable crop protection. Screening of elicitors of wheat defenses was carried out through a succession of experiments: biocidal in vitro tests enabled checking for any fungicidal activities, glasshouse experiments allowed determination of the efficacy of a given compound in protecting wheat against STB, and quantitative reverse-transcription polymerase chain reaction biomolecular tests investigated the relative expression of 23 defense genes in treated versus untreated plants. Therefore, we demonstrated that λ-carrageenan, CpG-ODN, glycine betaine, S. platensis, and ergosterol are potential elicitors of wheat defenses. Foliar treatment with these compounds conferred protection of wheat by up to approximately 70% against Z. tritici under semicontrolled conditions and induced both salicylic acid- and jasmonic acid-dependent signaling pathways in the plant. These findings contribute to extending the narrow list of potential elicitors of wheat defenses against Z. tritici.


Assuntos
Ascomicetos , Betaína/química , Ergosterol/metabolismo , Doenças das Plantas/microbiologia , Spirulina , Triticum/metabolismo , Carragenina , Triticum/microbiologia
2.
Front Plant Sci ; 13: 1060428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483948

RESUMO

Septoria tritici blotch (STB; Zymoseptoria tritici) is a severe leaf disease on wheat in Northern Europe. Fungicide resistance in the populations of Z. tritici is increasingly challenging future control options. Twenty-five field trials were carried out in nine countries across Europe from 2019 to 2021 to investigate the efficacy of specific DMI and SDHI fungicides against STB. During the test period, two single DMIs (prothioconazole and mefentrifluconazole) and four different SDHIs (fluxapyroxad, bixafen, benzovindiflupyr and fluopyram) along with different co-formulations of DMIs and SDHIs applied at flag leaf emergence were tested. Across all countries, significant differences in azole performances against STB were seen; prothioconazole was outperformed in all countries by mefentrifluconazole. The effects also varied substantially between the SDHIs, with fluxapyroxad providing the best efficacy overall, while the performance of fluopyram was inferior to other SDHIs. In Ireland and the UK, the efficacy of SDHIs was significantly lower compared with results from continental Europe. This reduction in performances from both DMIs and SDHIs was reflected in yield responses and also linked to decreased sensitivity of Z. tritici isolates measured as EC50 values. A clear and significant gradient in EC50 values was seen across Europe. The lower sensitivity to SDHIs in Ireland and the UK was coincident with the prevalence of SDH-C-alterations T79N, N86S, and sporadically of H152R. The isolates' sensitivity to SDHIs showed a clear cross-resistance between fluxapyroxad, bixafen, benzovindiflupyr and fluopyram, although the links with the latter were less apparent. Co-formulations of DMIs + SDHIs performed well in all trials conducted in 2021. Only minor differences were seen between fluxapyroxad + mefentrifluconazole and bixafen + fluopyram + prothioconazole; the combination of benzovindiflupyr + prothioconazole gave an inferior performance at some sites. Fenpicoxamid performed in line with the most effective co-formulations. This investigation shows a clear link between reduced field efficacy by solo SDHIs as a result of increasing problems with sensitivity shifting and the selection of several SDH-C mutations. The presented data stress the need to practice anti-resistance strategies to delay further erosion of fungicide efficacy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa